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Abstract

We propose a novel ensemble pruning methodology using non-monotone Simple Coali-

tional Games, termed SCG-Pruning. Our main contribution is two-fold: (1) Evaluate

the diversity contribution of a classifier based on Banzhaf power index. (2) Define the

pruned ensemble as the minimal winning coalition made of the members that together

exhibit moderate diversity. We also provide a new formulation of Banzhaf power in-

dex for the proposed game using weighted voting games. To demonstrate the validity

and the effectiveness of the proposed methodology, we performed extensive statistical

comparisons with several ensemble pruning techniques based on 58 UCI benchmark

datasets. The results indicate that SCG-Pruning outperforms both the original ensem-

ble and some major state-of-the-art selection approaches.

Keywords: Ensemble pruning, Simple coalitional game, Banzhaf power index,

Weighted voting game, Diversity.

1. Introduction

Ensemble learning remains a challenging task within the pattern recognition and

machine learning community [1–4]. A large body of literature has shown that a com-

bination of multiple classifiers is a powerful decision making tool, and usually gen-

eralizes better than a single classifier [5–7]. Ensemble learning builds a classification
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model in two steps. The first step concerns the generation of the ensemble members

(also called team, committee, and pool). To this end, several methods such as: boosting

[5], bagging [6], random subspace [8], and random forest [9] have been introduced in

the literature. In the second step, the predictions of the individual members are merged

together to give the final decision of the ensemble using a combiner function. Major

combining strategies include: majority voting [6], performance weighting [5], stacking

[6], and local within-class accuracies [10]. Ensemble learning has demonstrated a great

potential for improvement in many real-world applications such as: remote sensing [1],

face recognition [2], intrusion detection [3], and information retrieval [4].

It is well-accepted that no significant gain can be obtained by combining multi-

ple identical learning models. On the other hand, an ensemble whose members make

errors on different samples reaches higher prediction performance [5, 6]. This con-

cept refers to the notion of diversity among the individual classifiers. Unfortunately,

the relationship between diversity and the ensemble generalization power remains an

open problem. As suggested by many authors [5, 11, 12], an ensemble composed

of highly diversified members may result in a better or worse performance. In other

words, diversity can be either harmful or beneficial and therefore requires an adequate

quantification. As a matter of fact, it has been demonstrated that maximizing diversity

measures does not necessarily have a positive impact on the prediction performance of

the committee [13].

Despite their remarkable success, ensemble methods can negatively affect both the

predictive performance and the efficiency of the committee. Specifically, most tech-

niques for growing ensembles tend to generate an unnecessarily large number of clas-

sifiers in order to guarantee that the training error rate reaches its minimal value. This

necessity may result in overfitting the training set, which in turn causes a reduction in

the generalization performance of the ensemble. Furthermore, an ensemble made of

many members incurs an increase in memory requirement and computational cost. For

instance, an ensemble made of C4.5 classifiers can require large memory storage [14];

a set of lazy learning methods, such as k-nearest neighbors and K*, may increase the

prediction time. The memory and computational costs appear to be negligible for toy

datasets, nevertheless they can become a serious problem when applied to real-world
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applications such as learning from data stream.

All the above reasons motivate the appearance of ensemble pruning approaches

(also called ensemble shrinking, ensemble thinning, and ensemble selection). Ensem-

ble pruning aims at extracting a subset of classifiers that optimizes a criterion indicative

of a committee generalization performance. Given an ensemble composed of n clas-

sifiers, finding a subset that yields the best prediction performance requires searching

the space of 2n − 2 non-empty subsets, which is intractable for large ensembles. This

problem has been proven to be NP-complete [7]. To alleviate this computational bur-

den, many ensemble pruning approaches have been introduced in the literature. Most

of these techniques fall into three main categories: ranking-based, optimization-based,

and clustering-based approaches. Please, refer to the related work subsection for addi-

tional details.

Based on these insights, this paper considers the problem of ensemble pruning

as a Simple Coalitional Game (SCG). The proposed methodology aims at extracting

sub-ensembles with moderate diversities while ignoring extreme scenarios: strongly

correlated and highly diversified members. This mission is achieved in three steps: (1)

We formulate ensemble pruning as a non-monotone SCG played among the ensemble

members. (2) We evaluate the power or the diversity contribution of each ensemble

member using Banzhaf power index. (3) We define the pruned ensemble as the minimal

winning coalition constituted of the best ranked members. It is worth underscoring that

the original definition of Banzhaf power index for non-monotone SCGs is intractable.

Specifically, given a n-player game, the calculation of Banzhaf power index involves

summing over 2n−1 coalitions, which is unfeasible for large values of n. To overcome

this computational difficulty, we introduce a new formulation of Banzhaf power index

for the proposed game, and show that its time complexity is pseudo-polynomial.

1.1. Related work

Tsoumakas et al. classified the ensemble pruning approaches into 4 categories [15]:
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1.1.1. Ranking-based approaches

Methods of this category first assign a rank to every classifier according to an eval-

uation measure (or criterion); then, the selection is conducted by aggregating the en-

semble members whose ranks are above a predefined threshold. The main challenge

a ranking-based method faces, consists of adequately setting the criterion used for

measuring every member’s contribution to the ensemble performance. For instance,

Margineantu and Dietterich introduced Kappa pruning, which selects a subset made

of the most diverse members of the ensemble [14]. Specifically, it first measures the

agreement between all pairs of classifiers using kappa statistic; it then selects the pairs

of classifiers starting with the one which has the lowest kappa statistic (high diversity),

and it considers them in ascending order of their agreement until the desired number of

classifiers is reached.

Zheng Lu et al. proposed to estimate each classifier’s contribution based on the

diversity/accuracy tradeoff [16]. Then, they ordered the ensemble members according

to their contributions in descending order. In the same regard, Ykhlef and Bouchaf-

fra formulated ensemble pruning problem as an induced subgraph game [17]. Their

approach first ranks every classifier by considering the ensemble diversity and the indi-

vidual accuracies based on Shapley value; then, it constitutes the pruned ensemble by

aggregating the top N members.

Galar et al. introduced several criterions for ordering ensemble members in the con-

text of imbalanced classification [18]. They investigated and adapted five well-known

approaches: Reduce error [14], Kappa pruning [14], Boosting-based [19], Margin dis-

tance minimization [20], and Complementarity measure [20].

1.1.2. Optimization-based approaches

This category formulates ensemble pruning as an optimization problem. A well-

known method of this category is GeneticAlgorithm based Selective ENsemble (Gasen)

[21]. This technique assigns a weight to each classifier; a low value indicates that the

associated individual member should be excluded. These weights are initialized ran-

domly, and then evolved toward an optimal solution using genetic algorithm. The

fitness function is computed based on the corresponding ensemble performance on
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a separate sample set. Finally, pruning is conducted by discarding members whose

weights are below a predefined threshold.

Zhang et al. formulated ensemble pruning as a quadratic integer programming

problem that considers the diversity/accuracy tradeoff [22]. Since this optimization

problem is NP-hard, they used semi definite programming on a relaxation of the original

problem to efficiently approximate the optimal solution.

Rokach introduced Collective Agreement-based ensemble Pruning (CAP), a crite-

rion for measuring the goodness of a candidate ensemble [23]. CAP is defined based

on two terms: member-class and member-member agreement. The first term indicates

how much a classifier’s predictions agree with the true class label, whereas the sec-

ond term measures the agreement level between two ensemble members. This metric

promotes sub-ensembles whose members highly agree with the class and have low

inter-agreement among each other. Note that CAP provides only a criterion for mea-

suring the goodness of a candidate ensemble in the solution space, and hence requires

defining a search strategy like best-first or directed hill climbing [6, 15].

1.1.3. Clustering-based approaches

The key idea behind this category consists of invoking a clustering technique, which

allows identifying a set of representative prototype classifiers that compose the pruned

ensemble. A clustering-based method involves two main steps. In the first step, the

ensemble is partitioned into clusters, where individual members in the same cluster

make similar predictions (strong correlation), while classifiers from different clusters

have large diversity. For this purpose, several clustering techniques such as k-means

[24], hierarchical agglomerative clustering [25], and deterministic annealing [26] have

been proposed. In the second step, each cluster is separately pruned in order to increase

the diversity of the ensemble. For example, Bakker and Heskes selected the individual

members at the centroid of each cluster to compose the pruned ensemble [26].

1.1.4. Other approaches

This category comprises the pruning approaches that do not belong to any of the

above categories. For example, Partlas et al. [27] considered the ensemble pruning
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problem from a reinforcement learning perspective; Martı́nez-Muñoz et al. used Ad-

aBoost to prune an ensemble trained by Bagging [19].

1.2. Contributions and outline

The contribution of the proposed research is described by the following tasks:

(1) We propose a novel methodology for pruning an ensemble of learning models

based on the minimal winning coalition and Banzhaf power index.

(2) We present a new representation for non-monotone SCGs and provide, under some

restrictions, a pseudo-polynomial time algorithm for computing Banzhaf power

index.

(3) We show the efficiency of the proposed methodology through extensive experi-

ments and statistical tests using a large set of 58 UCI benchmark datasets.

The rest of this paper is organized as follows. Some diversity measures are de-

fined in Section 2. Necessary concepts from coalitional game theory are described in

Section 3. The proposed methodology is presented in Section 4. The experiments are

conducted on benchmark datasets, and the results are discussed in Section 5. Finally,

conclusions and future work are laid out in Section 6.

2. Diversity measures

Disagreement measure : Given two classifiers hi and h j, the disagreement measure

[5] is given by:

disi, j =
N01 + N10

N11 + N00 + N01 + N10 , (1)

where N11, N00, N01, and N10 denote the number of correct/incorrect predictions

made by hi and h j on the training set (Table 1). Note that a high value of disi, j

corresponds to large diversity between hi and h j. Consequently, the diversity

function f is defined as:

f (hi, h j) = disi, j. (2)
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Cohen’s kappa : Given two classifiers hi and h j, Cohen’s kappa [5] is defined as:

κi, j =
θi, j − ϑi, j

1 − ϑi, j
, (3)

where θi, j is the proportion of samples on which both hi and h j make the same

predictions on the training set, and ϑi, j corresponds to the probability that the

two classifiers agree by chance. The diversity function f is given by:

f (hi, h j) =
1

κi, j + ε
. (4)

A small positive constant ε is introduced to avoid numerical difficulties when

the kappa statistic approaches zero.

Mutual information : Brown et al. [28] used mutual information to assess the diver-

sity between two classifiers. They proposed the following expansion: First, let

Xi, X j and Y be three discrete random variables designating the predictions of

two classifiers hi and h j on the training set and the true class label, respectively.

Then, the diversity function f is given by:

f (hi, h j) = I(Xi; X j|Y) − I(Xi; X j), (5)

where I(Xi; X j|Y) and I(Xi; X j) denote the conditional mutual information and

the mutual information, respectively.

Table 1. The number of correct/incorrect predictions made by a pair of classifiers.

h j correct h j wrong

hi correct N11 N10

hi wrong N01 N00

3. Coalitional game theory: some definitions

Coalitional Game Theory (CGT) [29] models situations that involve interactions

among decision-makers, called players. The focus is on the outcomes achieved by
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groups rather than by individuals. We call each group of players a coalition, where ∅

corresponds to the empty coalition, and the set of all players is the grand coalition.

Definition 3.1. A simple coalitional game G is a pair (N, v) consisting of a finite

set of players N = {1, 2, ..., n}, and a characteristic function (a.k.a payoff function)

v : 2N 7→ {0, 1}, where 2N denotes the set of all possible coalitions that can be formed.

We say a coalition S ⊆ N wins if v(S ) = 1 and loses if v(S ) = 0. If in a simple game

v(T ) = 1⇒ v(S ) = 1 for all T ⊆ S ⊆ N , then the characteristic function v is said to be

monotone.

A straightforward representation of a simple coalitional game consists of enumer-

ating the payoffs for all coalitions S ⊆ N. However, this naı̈ve representation requires

space exponential in the number of players |N | = n, which is impractical in most cases.

To alleviate this tractability issue, several representations for coalitional games such as

marginal contribution nets, network flow games, and weighted voting games [30] have

been proposed in the literature. In this work, we consider only weighted voting games.

Definition 3.2. A weighted voting game G is defined by a set of players N = {1, ..., n},
a list of weights w = (w1,w2, ...,wn) ∈ Rn

+, and a threshold q ∈ R+ also known as quota;

we write G = (N, [w, q]). The payoff function is given by: v(S ) = 1 if
∑

i∈S wi ≥ q, and

v(S ) = 0 otherwise.

3.1. Banzhaf power index

Definition 3.3. Given a simple coalitional game G = (N, v), Banzhaf index [31], de-

noted Bzi(G), measures the power controlled by a player i. Formally, it is defined as:

Bzi(G) =
1

2n−1

∑
S⊆N\{i}

(v(S ∪ {i}) − v(S )) . (6)

Banzhaf index of non-monotone simple games has an interesting interpretation, but

before analyzing it, we need to introduce two concepts: positive and negative swings.

Definition 3.4. A coalition S ⊆ N is a positive swing for player i if S ∪ {i} wins

(v(S ∪ {i}) = 1) and S loses (v(S ) = 0). Conversely, the coalition S is considered as
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a negative swing for player i if v(S ∪ {i}) = 0 and v(S ) = 1. Let swing+i and swing−i
denote, respectively, the set of positive and negative swing coalitions for player i. They

are defined as:

swing+i = {S ⊆ N \ {i}|v(S ∪ {i}) = 1 ∧ v(S ) = 0}. (7)

swing−i = {S ⊆ N \ {i}|v(S ∪ {i}) = 0 ∧ v(S ) = 1}. (8)

Since the characteristic function of a simple game is Boolean, the computation

of Banzhaf power index is reduced to a counting problem. It suffices to identify all

possible values of the formula v(S ∪ {i}) − v(S ), count and sum them. Due to the non-

monotonicity property, v(S ∪ {i}) − v(S ) has three possible values: −1,+1, and 0. We

are only interested in counting the number of ones θ1 and negative ones θ−1. Notice

that θ1 and θ−1 correspond to the number of positive and negative swing coalitions,

respectively. Therefore, Banzhaf power index is proportional to the difference between

the number of positive and negative swing coalitions. Formally, Banzhaf index of

player i can be given by:

Bzi(G) =
1

2n−1 × (|swing+i | − |swing−i |). (9)

4. Ensemble pruning approach based on simple coalitional games

4.1. Notations

Let Ω = {h1, h2, ..., hn} be an ensemble made of n classifiers. Every learner is

provided with a set of m labeled samples Γ = {(x1, y1), ..., (xm, ym)}, where xi ∈ X
denotes a vector of feature values characterizing the instance i, and yi ∈ Y is the true

class label. The learning algorithm induces from Γ a hypothesis h that predicts the class

label of a sample x. Given a feature vector x, the ensemble Ω combines the predictions

of its members h1(x), ..., hn(x) using a combiner function Θ. The combination method

is responsible for turning the classifiers’ private judgments into a collective decision.

We assume that every ensemble member is trained separately using the same training
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set Γ. The problem of ensemble pruning consists of selecting from the ensemble Ω a

subset ω ⊆ Ω that yields the best predictive model i.e. with low generalization error,

using the combiner method Θ.

4.2. Ensemble pruning game

The concept of “diversity” is considered as the key success in constructing a com-

mittee of classifiers [5, 6]. According to Rokach [5], creating an ensemble of diversified

learners lead to uncorrelated errors that boost the group performance globally. Unfortu-

nately, efficiently measuring diversity and understanding its relationship with the clas-

sification generalization power of the committee remains an open problem [13, 28, 32].

Several experimental studies have shown that large diversity within an ensemble causes

a sharp drop in its performance [11]. Furthermore, it is well-known that the action of

building an ensemble of identical classifiers is ineffective. To seek a tradeoff between

these two extreme effects, we propose a methodology that focuses on extracting a set of

classifiers with average diversity. More specifically, we cast the problem of ensemble

pruning as a simple game that captures several levels of classifiers’ disagreement, and

promotes average diversity over the other two extreme scenarios (correlation and high

diversity). The various steps of SCG-Pruning are depicted by Fig. 1.

We begin this process by setting up a simple game G, built on the initial ensemble

of classifiers Ω. A classifier hi is considered as a player and is associated with a weight

wi, i ∈ {1, ..., n}. These weights are computed as follows. We define the diversity

contribution of a classifier hi, with respect to the entire ensemble Ω, as the average

diversity between hi and the rest of classifiers, which we denote by DivΩ(hi). In order

to approximate high-order-diversity induced by a candidate classifier, we consider that

the ensemble members exhibit only pairwise interactions.

Definition 4.1. The diversity contribution of a classifier hi ∈ Ω is defined as:

DivΩ(hi) =
1

n − 1

∑
h j∈Ω\{hi}

f (hi, h j), (10)

where f : Ω × Ω 7→ R assigns to a pair of classifiers (hi, h j) a real number that cor-

responds to the diversity between the decisions of hi and h j, with f (hi, hi) = 0 and
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Ensemble of Classifiers �Ω 

Find the Minimal Winning Coalition

Yes

No

End

Pruned Ensemble�ω

Build SCG-Pruning Game

Rank Classifiers
Compute Banzhaf index of each ensemble member

Init ω=∅

Find the classifier�h∈Ω with the highest Banzhaf index

Add it to �ω: �ω=ω∪{h}

IsWinning(ω)

Update �Ω: �Ω=�Ω\{h}

BZ=(Bz )
i i=1,...,n

Fig. 1. The SCG-Pruning process.

f (hi, h j) = f (h j, hi).

Definition 4.2. The weight wi assigned to a classifier hi ∈ Ω is given by:

wi =
∑

h j∈Ω\{hi}
I(DivΩ(hi) ≥ DivΩ(h j)), (11)

where I(condition) denotes the indicator function, which equals 1 when condition is

satisfied (condition = true), and 0 otherwise. It is noteworthy that each voting weight

wi can be thought as a level of diversity induced by hi, in which highly diversified

members receive higher weights.

In addition to the list of weights, we use two thresholds q1 and q2 to define the

payoff function of the pruning game, such that q2 − q1 > maxhi wi and q1 > maxhi wi.

Definition 4.3. Given q1 and q2, the payoff function of the proposed game G = (Ω, [w, q1, q2])
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is defined as:

v(S ) =

 1 i f q1 ≤
∑

hi∈S wi ≤ q2

0 Otherwise
. (12)

Under this payoff function, a coalition S of classifiers wins if the sum of its mem-

bers’ weights falls between q1 and q2. The term
∑

hi∈S wi measures the amount of

diversity present in S ; a low value of this term corresponds to strong correlations be-

tween the ensemble members, whereas a large value indicates that the coalition is com-

posed mainly of diversified classifiers. Furthermore, the interval [q1, q2] corresponds

to the width of permitted diversity, in which the lower bound q1 controls the degree of

correlation present in S , and the upper bound q2 serves as barrier for highly diverse en-

sembles. Both extreme cases can decrease the generalization performance of the group

[13]. When q1 and q2 are set properly, this payoff function ignores coalitions made

of correlated classifiers (lower bound) and those highly diverse (upper bound). As a

result, the focus will only be on groups with moderate diversities that can lead to better

generalization performance [11].

Correctly setting the values of q1 and q2 is of vital importance for the success of the

proposed methodology. We can distinguish two extreme cases: (i) low values for q1

and q2: in this case, the proposed technique focuses mainly on correlated ensembles;

and (ii) high values for q1 and q2: this choice considers only ensembles composed of

the most diverse members. One should avoid the configurations indicated by (i) and

(ii), and set the values of q1 and q2 between these two extreme cases. The choice of q1

and q2 will be further discussed in the experiments section (subsection 5.1.4).

The next step consists of ranking each classifier based on Banzhaf power index.

Under the SCG-Pruning game, the formulation of this solution concept (provided by

equation 9) has an interesting interpretation that is summarized as follows. Let consider

a coalition of correlated classifiers S , where v(S ) = 0. If a classifier hi induces the

proper amount of diversity into a losing coalition S and turns it into a winning coalition

(v(S ∪ {hi}) = 1), then hi is pivotal for S and the coalition S is a positive swing for

hi. Conversely, the set of negative swing for a classifier hi is defined as the ones in

which hi introduces large diversity into winning coalitions and changes their status
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into losing coalitions. Therefore, Banzhaf power index assigns high ranks to members

that induce diversity into correlated ensembles while penalizing members that exhibit

strong disagreement with the group.

The exact and direct computation of Banzhaf index under this representation re-

quires summing over all possible coalitions, which is exponential in the size of the

initial committee , and is therefore intractable for large ensembles. To cope with the

computational burden, we have investigated the relationship between the proposed

game and other representations of simple games. As a result, we have expressed

Banzhaf power index within the proposed framework in terms of Banzhaf indices of

two weighted voting games (Theorem 4.2).

Theorem 4.1. Consider the weighted voting game G1 = (Ω, [w, q1]), Bzi(G1) player

hi’s Banzhaf power index of G1, and |swing+i | the number of positive swing coalitions

for hi under the SCG-Pruning game G, then:

|swing+i | = 2n−1 × Bzi(G1).

Proof. Banzhaf power index of weighted voting games can be written as [33]:

Bzi(G1) =
1

2n−1 × |{S ⊆ Ω \ {hi}|v1(S ∪ {hi}) = 1 ∧ v1(S ) = 0}|.

=
1

2n−1 × |{S ⊆ Ω \ {hi}|W(S ) + wi ≥ q1 ∧W(S ) < q1}|.

whereW(S ) =
∑

h j∈S w j.

Since all weights are positive integers, we can write:

Bzi(G1) =
1

2n−1 × |{S ⊆ Ω \ {hi}|q1 − wi ≤ W(S ) < q1}|. (13)

On the other hand, the set of positive swing coalitions for player hi under G is given
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by:

swing+i = {S ⊆ Ω \ {hi}|v(S ∪ {hi}) = 1 ∧ v(S ) = 0}.

= {S ⊆ Ω \ {hi}|q1 ≤ W(S ) + wi ≤ q2 ∧W(S ) < q1}.

= {S ⊆ Ω \ {hi}|q1 − wi ≤ W(S ) ≤ q2 − wi ∧W(S ) < q1}.

Since q2 − q1 > maxhi wi, which implies q1 < q2 −wi for all i ∈ {1, ..., n}. Given this

new consideration, swing+i can be further simplified as:

swing+i = {S ⊆ Ω \ {hi}|q1 − wi ≤ W(S ) < q1}.

Using Banzhaf power index formulation given by equation 13, one can write:

|swing+i | = 2n−1 × Bzi(G1)�.

Corollary 4.1.1. Given the weighted voting game G2 = (Ω, [w, q2 + 1]), and player

hi’s Banzhaf index Bzi(G2), then the number of negative swing coalitions for hi under

the SCG-Pruning game G can be expressed as:

|swing−i | = 2n−1 × Bzi(G2).

Theorem 4.2. Consider the two weighted voting games G1 = (Ω, [w, q1]) and G2 = (Ω, [w, q2 + 1]),

then Bzi(G), player hi’s Banzhaf power index of the SCG-Pruning game G, can be sim-

plified as:

Bzi(G) = Bzi(G1) − Bzi(G2).

Proof. From equation 9, we have:

Bzi(G) =
1

2n−1 × (|swing+i | − |swing−i |).
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Using Theorem 4.1 and Corollary 4.1.1, one obtains:

Bzi(G) = Bzi(G1) − Bzi(G2)�.

The last step of the SCG-Pruning methodology is to determine the pruned ensemble

size L. For this purpose, we propose to map the pruned ensemble to the minimal

winning coalition composed only of highly ranked classifiers. In CGT, the definition

of the minimal winning coalition is outlined by Riker [34]:

“If a coalition is large enough to win, then it should avoid taking in any superfluous

members, because the new members will demand a share in the payoffs. Therefore,

one of the minimal winning coalitions should form. The ejection of the superfluous

members allows the payoff to be divided among fewer players, and this is bound to be

advantage of the remaining coalition members” [35].

Notice that this concept does not predict the coalition structure of the game, but it

provides strong evidence that one of the minimal winning coalitions will form. More-

over, in political science, this concept refers to group that contains the smallest number

of players which can secure a parliamentary majority. Putting these notions into the

context of SCG-Pruning, the minimal winning coalition corresponds to the smallest

sub-ensemble of classifiers that together exhibit moderate diversity.

4.3. The SCG-Pruning algorithm

The pseudo code of the proposed approach is depicted by Fig. 2. The SCG-Pruning

method takes as input an initial ensemble of classifiers, two thresholds, and a training

set. In addition, SCG-Pruning requires defining a pairwise function for estimating the

classifiers’ voting weights. For instance, the diversity between a pair of classifiers

can be estimated using statistical measures [5, 14] like: Cohen’s kappa, disagreement

measure, Q-statistic, etc., or even information theoretic concepts [28, 32, 36]. The

algorithm first computes the classifiers’ predictions of every training sample (line [3-

7]), and uses them to estimate the voting weights of the ensemble members (line [8-

10]). Then, it ranks every individual learner based on Banzhaf power index (line [11-

13]). Finally, it sets the pruned ensemble as the minimal winning coalition made of the
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best ranked learners (line [14-18]). More specifically, the algorithm iteratively chooses,

from among the classifiers not yet selected, the classifier with the highest rank, and adds

it to the selected set ω until ω wins.

1: Input: Γ: Training set.
Ω: Ensemble of classifiers.
q1, q2: Two thresholds.

2: Initialize: ω = ∅;
/*Getting classifiers’ predictions*/

3: For each hi ∈ Ω
4: For each (x j, y j) ∈ Γ
5: Predsi

j = hi(x j);
6: End for each (x j, y j)
7: End for each hi

/*Estimating classifiers’ weights based on Preds*/
8: For each hi ∈ Ω
9: Compute wi using formula 11;

10: End for each hi

/*Computing classifiers’ Banzhaf indices*/
11: For each hi ∈ Ω
12: Bzi(G) = Bzi(G1) − Bzi(G2);
13: End for each hi

/*Searching for the minimal winning coalition*/
14: Repeat
15: h = argmaxhi Bzi(G);
16: ω = ω ∪ {h};
17: Ω = Ω \ {h};
18: Until v(ω) = 1

19: Output: ω: Pruned ensemble.

Fig. 2. The SCG-Pruning algorithm.

4.4. Computational complexity

Note that the computational complexity of SCG-Pruning depends mainly on rank-

ing the ensemble members using Banzhaf power index (line 12 of the SCG-Pruning

algorithm). It is well-known that the exact computation of Banzhaf index for non-

monotone simple games is exponential in the number of players n, which is intractable

for large n [30]. Fortunately, under our representation, we were able to reduce that
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problem into the estimation of Banzhaf power indices for weighted voting games (The-

orem 4.2). In the literature, several techniques for computing Banzhaf power index of

weighted voting games have been proposed. The main three methods are: generating

functions [37], binary decision diagrams [38], and dynamic programming [33]. In this

paper, we have invoked dynamic programming since it has the lowest computational

complexity among the others. T. Uno proposed a slight improvement of the original

dynamic programming approach, and showed that computing Banzhaf indices of all

players can be done in O(n × q) instead of O(n2 × q), where q denotes the quota and n

is the number of players [33]. In SCG-Pruning algorithm, computing Banzhaf indices

of G1 = (Ω, [w, q1]) and G2 = (Ω, [w, q2 + 1]) can be executed in parallel; hence, the

calculation of the classifiers’ ranks requires O(n × q2) time complexity.

5. Experiments

5.1. Experimental setup

5.1.1. Datasets

To demonstrate the validity and the effectiveness of the proposed methodology, we

carried out extensive experiments on 58 datasets selected from the UCI Machine Learn-

ing Repository [39]. Some datasets contain missing values due to several factors such

as: inaccurate measurements, defective equipment, and human errors. An overview of

the datasets properties is shown in Table 2.

We resampled each dataset following Dietterich’s 5× 2 cross validation (cv). More

specifically, we first split (with stratification) the set of samples into two equal-sized

folds train and test. We trained the ensemble members and estimated their weights

using train; the other fold was dedicated to evaluate the generalization performance of

each pruning technique. Then, we reversed the roles of train and test to obtain another

estimate of the generalization accuracy. Repeating these steps five times, we finally

obtained 10 trained ensembles and accuracy estimates of each pruning technique. It is

noteworthy that we reported only the mean of these 10 accuracy measurements.
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Table 2. Properties of the datasets used in the experiments.

Datasets Abbreviations Samples Features Missing values Classes

Anneal Anneal 898 38 Yes 6
Audiology Audiology 226 69 Yes 24
Australian credit approval Australian 690 14 No 2
Balance Balance 526 4 No 3
Balloons adult+stretch Balloons1 20 4 No 3
Balloons adult-stretch Balloons2 20 4 No 3
Balloons small-yellow Balloons3 20 4 No 3
Balloons small-yellow+adult-stretch Balloons4 16 4 No 3
Breast cancer wisconsin BCW 699 9 Yes 3
Breast cancer BC 286 9 Yes 2
Car evaluation Car 1728 6 No 4
Chess King-Rook vs King-Pawn Chess 3196 36 No 2
Congressional voting records CVR 435 16 Yes 2
Credit approval Credit 690 15 Yes 2
Cylinder bands Cylinder 540 39 Yes 2
Dermatology Dermatology 366 34 Yes 6
Ecoli Ecoli 336 8 No 8
Glass identification Glass 214 10 No 6
Hayes-Roth Hayes-Roth 160 5 No 4
Hepatitis Hepatitis 155 19 Yes 2
Ionosphere Ionosphere 351 34 No 2
Iris Iris 150 4 No 3
Labor Labor 57 16 Yes 2
Lenses Lenses 24 4 No 3
Letter recognition Letter 20000 16 No 26
Low resolution spectrometer LRS 531 102 No 48
Lymphography Lymph 148 18 No 4
Monks1 Monks1 556 6 No 2
Monks2 Monks2 601 6 No 2
Monks3 Monks3 554 6 No 2
Multi-feature fourier MFF 2000 76 No 10
Multi-feature karhunen-love MFKL 2000 64 No 10
Multi-feature profile correlations MFPC 2000 216 No 10
Multi-feature zernike MFZ 2000 47 No 10
Mushroom Mushroom 8124 22 Yes 2
Musk1 Musk1 476 166 No 2
Musk2 Musk2 6598 166 No 2
Nursery Nursery 12960 8 No 5
Optical recognition of handwritten digits Optical 5620 64 No 10
Page blocks Page blocks 5473 10 No 5
Pen-based recognition of handwritten digits Pen 10992 16 No 10
Pima indians diabetes Pima 768 8 No 2
Post-operative patient POP 90 8 Yes 3
Soybean large Soybean L 683 35 Yes 19
Soybean small Soybean S 47 35 No 4
Spambase Spambase 4601 57 No 2
SPECT heart SPECT 267 22 No 2
SPECTF heart SPECTF 267 44 No 2
Teaching assistant evaluation TAE 151 5 No 3
Thyroid domain Thyroid D 7200 21 No 3
Thyroid gland Thyroid G 215 5 No 3
Tic-Tac-Toe endgame Tic-Tac-Toe 958 9 No 2
Waveform (version 1) Waveform 5000 21 No 3
Wine Wine 178 13 No 3
Wisconsin diagnostic breast cancer WDBC 569 30 No 2
Wisconsin prognostic breast cancer WPBC 198 32 Yes 2
Yeast Yeast 1484 8 No 10
Zoo Zoo 101 16 No 7
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5.1.2. Base classifiers

In order to generate the initial ensemble, we used 20 classifiers chosen from Weka

3.6 [40], PrTools 5.0.2 [41], and LibSVM 3.18 [42]. A summary of these learning

algorithms and their settings is given in Table 3. We set the rest of the parameters to

their default values. It is worth noting that some classifiers do not support missing

values. To overcome this problem, we replaced every missing entry with the mean and

the mode for numeric and nominal features, respectively.

Table 3. List of classifiers used in the experiments.

No. Algorithm Platform Description

1 J48 Weka C4.5 decision tree with the confidence factor set to 0.25. 2/3 of the training data
were used for growing the tree, and 1/3 for pruning it.

2 SimpleCart Weka Decision tree learner using CART’s minimal cost complexity pruning.
3 Logistic Weka Multinomial logistic regression.
4-6 IBk Weka K-nearest neighbors classifier using linear search with the Euclidean distance,

and 3 values for k = 1, 3, 5.
7 OneR Weka 1R rule-based learning algorithm.
8 Naı̈veBayes Weka Standard probabilistic naı̈ve Bayes classifier using supervised discretization.
9 Multilayer

Perceptron
Weka Multilayer perceptron classifier using backpropagation algorithm run for 500

epochs with ( f + 1 + k)/2 layers, where, f designates the number of features
and k is the number of classes of a dataset. The learning rate was set to 0.3, and
the momentum coefficient to 0.2.

10-11 Decision
Table

Weka Simple decision table majority classifier using (10) BestFirst and (11) Genetic
search methods with accuracy as the evaluation measure.

12 JRip Weka RIPPER (Repeated Incremental Pruning to Produce Error Reduction) algorithm
for rule induction. 2/3 of the training data were used for growing rules, and 1/3
for pruning them.

13 PART Weka PART decision list built using J48 with the confidence factor set to 0.25. 2/3 of
the training data were used for growing rules, and 1/3 for pruning them.

14 Fisherc PrTools Fisher’s least square linear classifier.
15 Ldc PrTools Linear Bayes normal classifier. No regularization was performed.
16 Qdc PrTools Quadratic Bayes normal classifier. No regularization was performed.
17 Parzendc PrTools Parzen density based classifier. The smoothing parameters were estimated from

the training data for each class.
18-20 SVM LibSVM Support vector machines using (18) a radial (Gaussian) kernel with γ = 1/ f

where f is the number of features; (19) a polynomial kernel of degree 3; and (20)
a linear kernel. The cost parameter C was set to 1.0.

5.1.3. SCG-Pruning configurations

As stated in the previous section, the weights assigned to the ensemble members

are computed based on a pairwise diversity measure. In our experiments, we used the

three metrics given by equations 2, 4, and 5: disagreement measure (Scg-dis), Cohen’s

kappa (Scg-κ), and mutual information (Scg-mi). We invoked MIToolbox [43] in order
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to compute the information theoretic concepts.

5.1.4. Influence of the thresholds q1 and q2

In order to understand how the thresholds q1 and q2 affect the performance of the

proposed approach, we present a 3D plot which displays the relationship between these

thresholds and the accuracy of the produced ensemble by each of the SCG-Pruning

variants. Fig. 3 shows the 3D plots for the three SCG-Pruning variants on the “Audiol-

ogy” dataset. Given a point (x, y, z), x and y coordinates correspond to the values of q1

and q2, respectively. The z-coordinate indicates the performance of SCG-Pruning on

the training set.

(a) Scg-mi (b) Scg-dis (c) Scg-κ

(d) Scg-mi (e) Scg-dis (f) Scg-κ

Fig. 3. (a),(b),(c) The impact of (q1, q2) on the performance of Scg-mi, Scg-dis, and Scg-κ, respectively,
for the “Audiology” dataset. The x and y axis correspond to the values of q1 and q2, respectively. z-axis
represents the performance of the pruned ensemble. The figures (d), (e), and (f) show 2D plots from the top
view of (a),(b), and (c), respectively

Examining Fig. 3.d, we can identify four main regions: The lower right half of

the plot “blue surface” represents the set of impossible configurations of SCG-Pruning

game. In this case, the values of q1 and q2 violate our initial condition, which states

that q2−maxhi wi > q1, and therefore the game can’t be defined. The points laying close

to the right upper corner of the plot “yellow triangle” (large q1 and q2) correspond to

the configurations where the pruned ensemble exhibits very large diversity. On the left

upper region “green triangle”, we observe a very low performance by the three SCG-
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Pruning variants. A possible explanation of this behavior is that the proposed game is

not well-defined and fails to deliver an appropriate ranking of the ensemble members.

More specifically, let consider the two extreme values of the thresholds q1 = 20 and

q2 = 190. In this case, the interval that defines if a coalition wins (width of permitted

diversity) is extremely large, and hence almost any coalition wins. In addition, the

number of negative swings for every player is 0 since no coalition has a weight that

exceeds 190. Finally, the last region “red triangle” yields the best performance and

corresponds to the set of preferable game settings. We refer to it as R. Under these

settings, the proposed approaches produce ensembles with moderate diversities.

Based on these observations, we set the values for these thresholds as follows. For

small-sized ensembles, we picked the pair (q1, q2) from R that yields the best per-

formance on the training set; whereas for larger ensembles, we selected their values

randomly from the search region R.

5.2. First set of experiments

In the first series of experiments, we considered the size of the pruned ensemble L

as an input parameter provided by the user. In this case, the proposed pruning approach

selects the top L classifiers based on their Banzhaf indices. We referred to this variant

as SCG-Ranking. We compared the proposed variants with: Kappa pruning, greedy,

and exhaustive search strategies. For the greedy search [6], we implemented two vari-

ants: Forward Selection (Fs) and Backward Elimination (Be). Forward selection starts

with an empty set; then, it chooses from among the classifiers not yet selected the clas-

sifier which best improves a specific evaluation criterion until the pre-set size of the

pruned ensemble is met. Conversely, in backward elimination, the pruned ensemble is

initialized as the entire ensemble; next, the algorithm proceeds by iteratively eliminat-

ing a classifier based on an evaluation criterion until the desired number of classifiers is

reached. Exhaustive search tests all possible subsets of size L classifiers (there are
(

20
L

)
subsets), and select the ensemble with highest pre-defined criterion. Both exhaustive

and greedy search approaches require defining a criterion indicative of the ensemble

generalization performance. To this end, we implemented the two criteria proposed by

Meynet et al. [36]: Mutual Information Diversity (Mid), and Information Theoretic
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Score (Its). Table 4 gives a summary of the compared ensemble selection techniques.

Note that for all pruning techniques, we set the size of the pruned ensemble to L = 3,

5, 7, and 9.

Table 4. Legend for Tables and Figures presented in the first set of experiments.

Pruning technique Description

Scg-l-κ SCG-Ranking with Cohen’s kappa (equation 4) as the diversity measure.
Scg-l-dis SCG-Ranking with disagreement measure (equation 2) as the diversity metric.
Scg-l-mi SCG-Ranking with mutual information (equation 5) as the diversity measure.
Fs-mid Forward selection using the Mid evaluation criterion.
Fs-its Forward selection with Its as the search criterion.
Be-mid Backward elimination that uses Mid evaluation criterion.
Be-its Backward elimination with Its as the search criterion.
Kappa Kappa pruning.
Exh-l-mid Exhaustive search that considers only ensembles of L classifiers using the Mid

criterion.
Exh-l-its Exhaustive search that considers only ensembles of L classifiers using the Its cri-

terion.

Following Demšar’s recommendations [44], we carried out a Friedman test to com-

pare these 10 ensemble pruning techniques. This test is useful for comparing several

algorithms over multiple datasets. Under the null hypothesis, we assumed that all tech-

niques perform similarly. The mean ranks computed for Friedman tests are given in

Table 5. The four Friedman tests reject the null hypothesis that all pruning schemes are

equivalent and confirm the existence of at least one pair of techniques with significant

differences. A summary of these tests’ statistics is given in Table 6.

Table 5. Mean ranks of the 10 compared pruning techniques.

Scg-l-κ Scg-l-dis Scg-l-mi Fs-mid Fs-its Be-mid Be-its Kappa Exh-l-mid Exh-l-its

L = 3 2.50 2.66 2.92 7.67 5.99 7.94 7.20 5.90 7.40 4.82
L = 5 2.78 3.11 2.51 7.34 6.47 7.77 7.14 5.83 7.12 4.94
L = 7 2.97 3.44 2.45 7.00 6.51 7.44 7.08 6.97 6.89 4.26
L = 9 3.33 3.28 2.32 7.29 6.47 7.59 7.04 6.67 7.03 3.97

Table 6. Summary of the Friedman tests’ statistics.

L=3 L=5 L=7 L=9

FF 58.26 46.99 42.15 45.66
α 1 × 10−16 1 × 10−16 1 × 10−16 1 × 10−16

Degrees of freedom (d f ) 9 ; 513 9 ; 513 9 ; 513 9 ; 513
F 11.62 11.62 11.62 11.62
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Then, we proceeded with a post hoc Nemenyi test at a 5% significance level with

the critical value q0.05 = 3.16 and the critical difference CD = 1.78. This test aims at

identifying pairs of algorithms that are significantly different. We got the results shown

by Figs. 4-7. On the horizontal axis, we represent the average rank of every pruning

method, and link using thick lines the group of techniques with no significant differ-

ences. On the top left, we show the critical difference used in the test. Figs. 4-7 show

that the proposed methodology performs significantly better than the other alternatives.

More specifically, we can identify two families of pruning techniques. The first family

is mainly composed of the proposed variants. The results indicate that Scg-l-mi perfor-

mance is in the lead, but the experimental data does not provide any evidence regarding

the significance differences among all SCG-Ranking configurations. In addition, as the

size of the pruned ensemble increases (L = 7, 9), we observe an improvement in the

performance of Exh-l-its (lower ranks). A possible explanation of this behavior might

be related to the criterion Its. For larger ensembles (L > 5), this criterion finds an ap-

propriate subset of classifiers that balances accuracy and diversity, but fails to provide

a reliable evaluation for small-sized ensembles. The second family i.e. diversity-based

approaches, that is, pruning techniques which construct ensembles made of the most

diverse classifiers, exhibit the worst performance. This latter observation confirms our

initial claim which states that maximizing diversity deteriorates the generalization per-

formance of the ensemble.

34567

SCG-L-κ

SCG-L-DIS

EXH-L-ITS

EXH-L-MID

 2

SCG-L-MI

CD=1.78

8

FS-ITS

FS-MID

BE-MID

BE-ITS

KAPPA

Fig. 4. Pairwise comparisons among all techniques for L = 3 using Nemenyi test. The numbers plotted on
the horizontal axis correspond to the average ranks given in Table 5. The thick lines connect techniques that
are not significantly different, and CD stands for the critical difference.
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Fig. 5. Pairwise comparisons among all techniques for L = 5 using Nemenyi test. The numbers plotted on
the horizontal axis correspond to the average ranks given in Table 5. The thick lines connect techniques that
are not significantly different, and CD stands for the critical difference.
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Fig. 6. Pairwise comparisons among all techniques for L = 7 using Nemenyi test. The numbers plotted on
the horizontal axis correspond to the average ranks given in Table 5. The thick lines connect techniques that
are not significantly different, and CD stands for the critical difference.
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Fig. 7. Pairwise comparisons among all techniques for L = 9 using Nemenyi test. The numbers plotted on
the horizontal axis correspond to the average ranks given in Table 5. The thick lines connect techniques that
are not significantly different, and CD stands for the critical difference.
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5.2.1. Kappa error diagrams

This section presents kappa error diagrams in order to gain some insight into the

diversity/accuracy tradeoff. These diagrams depict an ensemble of classifiers as a

scatterplot. Every pair of classifiers is represented as a point on the plot, where the

x-coordinate corresponds to the value of Cohen’s kappa κ between the pair, and the y-

coordinate is the averaged individual error rate of the two classifiers. Following Garcı̀a-

Pedrajas et al. [11], we estimated the error rate of every classifier on the test set. The

aim of this experiment is to investigate whether the proposed idea, that is, constructing

an ensemble with moderate diversity is responsible for the excellent results reported by

the previous statistical tests. Figs. 8-9 show kappa error diagrams for several pruning

techniques with L = 9 on two datasets: “Glass identification” and “Lymphography”.

Note that we also reported kappa error diagrams for the entire ensemble, denoted All.
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Fig. 8. Kappa error diagrams for the dataset “Glass identification”.

The analysis of these diagrams is summarized as follows. First, the diagrams as-

sociated with the diversity-based pruning techniques are skewed to the left side of the

plot, which indicates large diversity. This behavior is expected since these techniques

construct ensembles that are made of the most diverse members. On the other hand,

SCG-Ranking variants provide less diversity than the aforementioned approaches. Ad-

ditionally, when compared to All, the proposed approach does not select strongly cor-
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Fig. 9. Kappa error diagrams for the dataset “Lymphography”.

related classifiers. This behavior is consistent with our initial idea, that is, the proposed

methodology extracts sub-ensembles with moderate diversities.

5.2.2. Comparison of the proposed variants

In order to understand how the diversity measure affects the ranking process, we

compared, in a pairwise manner, the similarity among the ensembles obtained by the

three variants of the proposed methodology. Ulaş et al. [12] define the similarity

between two ensembles S 1 and S 2 as:

S im(S 1, S 2) =
|S 1 ∩ S 2|
|S 1 ∪ S 2|

. (14)

The similarity varies between 0 and 1, where the value 1 indicates that the two en-

sembles are identical, and 0 means that they do not share any common members. Table

7 gives the averaged pairwise similarities among the ensembles obtained by the pro-

posed approach variants for L = 3, 5, 7, and 9. The analysis of the results reported in

Table 7 can be summarized by two important observations. First, the ensembles found

by the proposed variants share, in average, at least half of their members. In addition, as

the number of classifiers grows, all configurations tend to find very similar ensembles.

We believe this behavior arises because the very first classifiers are indistinguishable,
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and obtaining an identical ordering by all variants is uncommon. Second, the aver-

age similarity between Scg-l-dis and Scg-l-κ is 0.78 ((0.67 + 0.76 + 0.82 + 0.85)/4),

indicating that these two pruning techniques obtain very similar ensembles. This re-

sult is expected since both Scg-l-dis and Scg-l-κ use statistical measures to estimate

the diversity between two classifiers. Moreover, the similarity between Scg-l-mi and

the statistical-based diversity variants (Scg-l-dis and Scg-l-κ) is less than the one be-

tween Scg-l-dis and Scg-l-κ, which justifies the different performances reported in the

previous section.

Table 7. Averaged pairwise similarity measurements.

L=3 Scg-l-mi Scg-l-dis Scg-l-κ L=5 Scg-l-mi Scg-l-dis Scg-l-κ

Scg-l-mi 1.00 0.45 0.56 Scg-l-mi 1.00 0.59 0.69
Scg-l-dis 0.45 1.00 0.67 Scg-l-dis 0.59 1.00 0.76
Scg-l-κ 0.56 0.67 1.00 Scg-l-κ 0.69 0.76 1.00

L=7 Scg-l-mi Scg-l-dis Scg-l-κ L=9 Scg-l-mi Scg-l-dis Scg-l-κ

Scg-l-mi 1.00 0.69 0.75 Scg-l-mi 1.00 0.73 0.78
Scg-l-dis 0.69 1.00 0.82 Scg-l-dis 0.73 1.00 0.85
Scg-l-κ 0.75 0.82 1.00 Scg-l-κ 0.78 0.85 1.00

5.3. Second set of experiments

In the second experiment, the size of the pruned ensemble is no longer specified.

The proposed approach selects the minimal winning coalition composed only of the

best classifiers based on their Banzhaf indices. We compared the three variants of

SCG-Pruning: Scg-κ, Scg-dis, and Scg-mi with the following techniques:

Exh searches the space of all possible subsets (220 − 2). Then, it chooses the ensemble

that maximizes an evaluation criterion. For this search strategy, we implemented

the following criteria: Mutual Information Diversity (Exh-mid), and Information

Theoretic Score (Exh-its) [36].

All combines the predictions of all available classifiers without selection using major-

ity vote.

Gasen. We evolved a population made of 20 individuals over 100 generations. The

mutation and the crossover probabilities were set to 0.05 and 0.6, respectively.
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Table 8 shows the results of the second experiment.

Table 8. Summary of mean accuracy results of the second experiment.

Datasets Scg-κ Scg-dis Scg-mi Gasen Exh-mid Exh-its All

Anneal 97.57 96.93 98.49 96.24 82.87 76.08 95.23
Audiology 80.09 78.23 81.15 77.43 76.46 63.01 76.19
Australian 84.43 84.00 84.81 77.91 76.72 77.01 85.91
Balance 90.05 88.06 93.09 90.18 67.14 71.61 89.50
Balloons1 95.00 95.00 95.00 92.00 81.00 71.00 93.00
Balloons2 94.00 92.00 92.00 87.00 82.00 91.00 86.00
Balloons3 92.00 91.00 92.00 88.00 75.00 88.00 80.00
Balloons4 71.25 75.00 72.50 68.75 62.50 60.50 68.75
BCW 96.02 96.14 96.57 95.88 91.10 95.39 96.80
BC 74.27 72.03 74.97 71.75 70.00 69.44 74.20
Car 93.65 93.23 94.72 87.18 88.30 70.95 92.67
Chess 99.13 99.10 99.19 94.14 68.06 68.06 98.03
CVR 93.84 93.84 95.95 94.07 91.44 92.92 95.59
Credit 83.74 85.39 85.59 77.97 73.28 72.52 86.12
Cylinder 76.52 76.52 76.52 75.78 70.26 66.70 77.41
Dermatology 97.49 97.49 97.54 97.43 61.80 68.63 97.38
Ecoli 86.37 84.94 85.83 83.15 66.73 74.11 86.37
Glass 70.56 68.97 71.31 70.75 60.70 62.10 69.07
Hayes-Roth 79.38 79.00 82.50 78.38 60.13 62.25 74.88
Hepatitis 82.57 80.63 82.18 80.65 80.25 80.90 82.32
Ionosphere 90.31 90.49 90.77 88.72 85.24 84.16 91.85
Iris 95.07 95.07 95.07 94.40 92.53 93.60 94.53
Labor 89.88 89.88 90.23 90.20 77.09 67.62 89.83
Lenses 76.67 77.50 77.50 74.17 83.33 65.00 76.67
Letter 95.93 96.05 95.96 94.76 65.36 68.33 95.33
LRS 55.48 52.96 57.82 50.55 49.96 47.04 53.45
Lymph 85.27 84.19 86.08 83.92 76.22 78.51 84.32
Monks1 99.46 99.46 99.57 95.68 90.72 90.40 95.14
Monks2 84.70 87.85 86.83 88.62 64.30 65.72 67.02
Monks3 97.15 97.15 98.81 95.78 86.79 80.90 97.18
MFF 82.20 82.53 82.05 80.67 60.89 78.89 82.27
MFKL 97.37 97.43 97.37 95.41 61.74 97.38 97.19
MFPC 97.76 97.74 97.72 97.07 66.56 88.83 97.65
MFZ 82.72 82.86 82.84 69.46 61.32 79.88 82.66
Mushroom 100.0 100.0 100.0 100.0 95.07 100.0 100.0
Musk1 88.11 88.11 88.11 84.50 78.15 77.73 88.11
Musk2 98.54 98.54 98.54 96.91 79.72 84.64 97.05
Nursery 98.35 98.29 98.69 89.69 70.97 70.97 97.22
Optical 98.67 98.67 98.69 98.21 69.39 98.64 98.57
Page blocks 97.17 97.00 97.15 95.97 92.98 92.70 96.84
Pen 99.32 99.29 99.33 98.46 64.43 66.72 99.10
Pima 73.46 72.58 74.45 71.35 70.29 68.96 76.69
POP 70.67 69.11 68.67 71.11 68.00 70.22 67.33
Soybean L 92.33 92.24 92.47 92.09 69.59 82.94 92.23
Soybean S 100.0 100.0 100.0 98.71 82.63 98.32 100.0
Spambase 94.55 94.51 94.54 91.46 80.38 79.64 94.39
SPECT 81.87 80.60 81.20 79.84 78.87 79.40 82.39
SPECTF 76.70 76.40 76.70 76.55 74.68 78.80 78.65
TAE 49.82 48.09 49.41 50.21 46.61 46.81 47.30
Thyroid D 99.51 99.18 99.48 93.41 99.57 92.58 96.74
Thyroid G 95.44 95.35 95.72 94.79 89.02 95.72 94.89
Tic-Tac-Toe 97.10 97.04 97.33 85.82 80.75 68.31 88.35
Waveform 85.80 85.85 84.24 80.15 62.24 61.30 85.85
Wine 98.65 98.54 98.54 95.96 77.08 98.20 98.43
WDBC 96.45 96.42 96.41 91.28 90.83 94.52 96.38
WPBC 77.88 78.59 78.79 76.87 75.15 76.26 78.69
Yeast 58.01 56.13 58.50 54.47 54.03 50.96 60.05
Zoo 94.67 95.06 95.06 94.67 92.90 92.11 95.06

We made pairwise comparisons between the performance of the entire ensem-

ble “All” with each of the above presented ensemble pruning techniques using the

Wilcoxon signed-ranks and the sign tests. Due to its robustness, we considered Wilcoxon

test as the main comparison statistic. A summary of the Wilcoxon signed-ranks and

the sign tests’ statistics is shown in Table 9. The first row specifies the number of
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win/tie/loss of the technique in the column over the technique in the row. The second

and the third rows show the p-values for the sign and the Wilcoxon tests, respectively.

Table 9. Summary of Wilcoxon signed-ranks and sign tests’ statistics.

Scg-κ Scg-dis Scg-mi Gasen Exh-mid Exh-its

All
W/T/L 38/5/15 34/5/19 41/4/13 13/2/43 4/0/54 7/1/50

pvs 2.23 × 10−3 + 4.79 × 10−2 * 3.07 × 10−4 + 1.00 × 10−4 + 3.17 × 10−12 + 2.40 × 10−9 +

pvw 2.47 × 10−3 + 9.45 × 10−2 2.05 × 10−4 + 1.79 × 10−4 + 2.34 × 10−10 + 2.62 × 10−9 +

Differences at 5% significance level are marked with ∗, and at 1% with +.

The results shown in Tables 8 and 9 indicate that the proposed methodology per-

forms better than the other alternatives in most cases. Most importantly, Scg-mi and

Scg-κ significantly improve the performance of the initial ensemble with p − value ≤ 2.47 × 10−3.

Moreover, according to the sign test, the performance of Scg-dis is significantly better

than All. However, Wilcoxon test fails to detect this difference. On the other hand,

both tests indicate that the rest of the pruning techniques are significantly worse than

All. Note that this experiment performs only pairwise comparisons to test whether

each pruning technique improves the initial ensemble. In addition, it does not provide

any evidence regarding the differences that might exist among the selection approaches.

To this end, we carried on with a Friedman test to statistically compare the six pruning

techniques. The averaged ranks assigned to these approaches are given in Table 10.

Friedman test rejects the null hypothesis which states that these methods are equiv-

alent with FF = 109.70 > F(5, 285) = 19.47 for α = 1.0 × 10−16 (FF is distributed

according to the F distribution with 6 − 1 = 5 and (6 − 1) × (58 − 1) = 285 degrees

of freedom). Then, in order to identify pairs of pruning techniques with significant

performance differences, we followed up this finding with a post hoc Nemenyi test at

a 5% significance level with the critical value q0.05 = 2.85 and the critical difference

CD = 0.99.

Table 10. Averaged ranks of the 6 compared pruning techniques.

Scg-κ Scg-dis Scg-mi Gasen Exh-mid Exh-its

2.24 2.67 1.76 3.86 5.43 5.03
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The pairwise comparisons given by Nemenyi test (Fig. 10) reveal the existence

of three groups of techniques: SCG-Pruning, Gasen, and Exh variants from the best-

performing pruning approach to the worst one. As shown by the first experiment, no

significance difference can be observed among the proposed variants. In particular,

Scg-mi shows better performance than the other alternatives. We also reported an im-

portant drop in the performance of Exh-its in contrast to the first experiment. In addi-

tion to the observations discussed earlier, we believe this drop occurs because Exh-its

fails to find the right number of classifiers to include in the final ensemble.
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Fig. 10. Pairwise comparisons among the 6 pruning techniques using Nemenyi test. The numbers plotted
on the horizontal axis correspond to the average ranks given in Table 10. The thick lines connect techniques
that are not significantly different, and CD stands for the critical difference.

5.4. Third set of experiments: influence of the ensemble size

In this experiment, we investigate the influence of the initial ensemble size on the

performance of the proposed approach 1. To this end, we trained an ensemble made of

100 Decision Stump trees using Bagging. For both learning models, we imported the

implementation provided by Weka, and set all their parameters to the default values.

We compared Scg-mi and Scg-κ with Reduce Error (Re) [14], Complementarity Mea-

sure (CC) [20], Margin Distance Minimization (Mdsq) [20] with a moving reference

point p set to 2
√

2 × i/n at the ith iteration, Orientation Ordering (OO) [45], Boosting-

Based (BB) [19], Genetic algorithm (Gasen), and Kappa pruning (Kappa). For genetic

algorithm, we used the following configurations: crossover probability=0.6, mutation

rate=0.05, number of generations=100, and population size=100. It is noteworthy that

1We would like to thank the anonymous reviewer for suggesting us to carry out this experiment.
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the pruning approaches Re, CC, Mdsq, OO, BB, and Kappa require setting the size of

the pruned ensemble L. In order to make a fair comparison, we set L to the same size

found by Scg-mi. Table 11 gives the results of this experiment. The last row specifies

the mean rank of each method over all datasets.

Table 11. Summary of mean accuracy results of the third experiment.

Datasets Scg-κ Scg-mi Gasen Mdsq Re OO Kappa CC BB Bagging

Anneal 83.54 83.54 82.78 82.78 82.78 79.11 78.33 82.34 78.35 82.78
Audiology 47.17 47.08 46.46 46.46 46.46 46.46 46.46 46.46 46.46 46.46
Australian 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51
Balance 80.16 78.82 80.13 78.72 79.17 79.23 74.49 74.46 77.47 72.38
Balloons1 87.00 87.00 84.00 87.00 81.00 81.00 75.00 72.00 94.00 74.00
Balloons2 81.00 76.00 75.00 76.00 72.00 71.00 82.00 82.00 80.00 72.00
Balloons3 75.00 75.00 67.00 69.00 68.00 60.00 69.00 64.00 69.00 68.00
Balloons4 67.50 67.50 68.75 65.00 65.00 70.00 66.25 66.25 65.00 62.50
BCW 95.57 95.11 94.59 94.91 94.39 94.56 95.39 93.45 92.70 93.39
BC 73.71 73.92 72.73 74.34 73.71 73.92 70.49 71.61 72.59 71.89
Car 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02
Chess 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05
CVR 95.63 95.63 95.63 95.63 95.63 94.94 94.94 94.94 95.03 95.63
Credit 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51 85.51
Cylinder 70.04 69.04 70.52 69.44 70.33 68.19 67.11 64.52 69.04 70.56
Dermatology 59.13 56.01 53.11 51.69 53.06 50.08 52.08 50.11 50.11 51.37
Ecoli 67.44 67.44 64.64 64.64 64.64 64.70 63.81 64.58 64.58 64.64
Glass 53.83 57.38 52.52 55.05 56.54 51.04 50.16 50.64 50.55 51.25
Hayes-Roth 60.75 59.50 60.75 56.00 59.38 54.38 54.38 50.08 50.13 56.25
Hepatitis 81.80 81.80 81.03 83.22 81.67 82.83 79.48 79.75 80.50 81.03
Ionosphere 83.31 82.79 82.96 83.13 82.79 82.16 83.02 81.48 83.25 83.37
Iris 95.33 95.33 95.07 94.27 95.20 87.60 82.47 80.00 94.67 94.53
Labor 85.97 85.20 83.17 88.40 81.77 84.19 88.39 78.95 88.39 82.41
Lenses 76.67 70.00 75.83 72.50 76.67 71.67 64.17 61.67 67.50 64.17
Letter 70.78 71.29 68.03 68.97 69.91 67.98 67.63 67.08 67.58 71.94
LRS 51.49 50.06 49.72 49.68 50.10 47.38 48.97 49.72 49.72 49.68
Lymph 76.22 76.08 76.35 77.30 75.41 75.81 72.97 72.03 70.81 74.46
Monks1 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64
Monks2 65.19 65.19 65.16 65.39 65.52 65.03 65.39 64.43 65.39 65.72
Monks3 78.81 78.81 78.81 78.81 78.81 77.65 77.83 78.48 78.81 89.89
MFF 68.41 67.70 65.90 61.63 68.26 62.12 63.67 60.68 60.53 62.64
MFKL 65.04 65.09 62.17 61.12 63.43 60.63 63.20 60.50 60.58 64.30
MFPC 74.99 73.29 72.04 67.70 77.89 65.84 60.77 61.77 62.85 77.88
MFZ 66.62 67.26 64.40 64.38 66.60 63.71 63.29 63.39 63.43 66.02
Mushroom 88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68
Musk1 72.27 71.72 72.18 71.26 72.18 70.76 69.79 70.55 71.89 71.47
Musk2 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59
Nursery 66.25 66.25 66.25 66.25 66.25 66.08 66.08 66.08 66.25 66.25
Optical 65.40 64.35 63.49 62.96 63.38 62.67 62.62 61.79 61.79 64.12
Page blocks 93.17 93.18 93.13 93.13 93.13 93.06 93.06 93.13 93.06 93.13
Pen 60.66 60.56 60.59 60.51 60.63 60.05 60.01 60.46 60.49 60.57
Pima 74.97 74.66 74.77 74.61 74.58 73.85 71.85 71.59 72.76 74.11
POP 64.22 62.44 68.00 65.33 70.67 62.89 65.78 61.11 64.22 70.89
Soybean L 68.26 68.49 68.38 68.41 68.43 66.38 66.21 67.44 67.47 67.50
Soybean S 97.83 95.80 97.39 90.62 81.49 76.54 71.45 72.84 74.09 96.21
Spambase 83.31 83.15 81.73 81.26 81.53 81.04 79.97 79.06 79.95 79.07
SPECT 79.40 79.40 79.40 79.40 79.40 79.40 79.40 79.40 79.40 79.40
SPECTF 78.05 77.75 77.83 78.13 78.35 78.20 79.25 76.47 77.30 79.40
TAE 47.39 46.71 47.39 46.46 49.91 49.27 45.08 44.55 44.96 46.72
Thyroid D 95.24 95.24 95.24 95.24 95.24 95.24 95.24 95.24 95.24 95.24
Thyroid G 82.69 82.78 81.58 80.93 82.60 81.12 79.54 80.47 80.37 79.72
Tic-Tac-Toe 70.02 69.79 69.48 69.94 69.94 69.06 68.85 67.16 68.81 69.94
Waveform 60.90 60.18 60.22 60.28 59.93 60.21 60.08 57.47 58.11 61.46
Wine 92.70 92.02 91.35 92.13 90.79 91.46 83.71 80.85 94.94 89.44
WDBC 92.83 92.94 91.81 92.72 92.44 92.72 92.65 91.21 92.83 90.97
WPBC 72.32 74.24 74.44 73.84 75.56 72.73 76.06 70.71 73.54 76.36
Yeast 50.58 50.67 50.61 50.50 50.61 47.78 49.02 50.61 50.70 50.54
Zoo 73.62 64.37 61.95 62.55 60.58 59.20 65.90 59.40 56.07 61.57

Average ranks 3.14 3.86 4.69 4.94 4.58 6.66 7.03 8.15 6.62 5.34

First, we statistically compared the performances of these pruning schemes us-
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ing the average ranks over 58 datasets. Friedman test rejects the null hypothesis that

all methods have similar performances with FF = 20.77 > F(9, 513) = 11.62 for

α = 1 × 10−16 (FF is distributed according to the F distribution with 10 − 1 = 9 and

(10 − 1) × (58 − 1) = 513 degrees of freedom). Since we are only interested in testing

whether the pruning approaches significantly improve the initial ensemble “Bagging”,

we conducted a Bonferroni-Dunn test at a 10% significance level with the critical value

q0.10 = 2.54 and the critical difference CD = 1.43. The results of this test are depicted

by Fig. 11. On the horizontal axis, we represent the averaged rank of every pruning

technique, and mark using a thick line an interval of 2 × CD one on the right and the

other to the left of Bagging’s mean rank.
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Fig. 11. Comparison of Baggingwith 9 pruning techniques using Bonferroni-Dunn test. The numbers plotted
on the horizontal axis correspond to the average ranks given in Table 11. All techniques with ranks outside
the marked interval are significantly different than Bagging.

The analysis of Bonferroni-Dunn test (Fig. 11) reveals that the performances of

Scg-κ and Scg-mi are in the lead followed by Re, Gasen, and Mdsq. Most importantly,

we notice that both Scg-κ and Scg-mi fall outside the marked interval. Therefore, we can

conclude that the proposed variants perform significantly better than Bagging, while

the experimental data cannot detect any improvement of Bagging using Re, Gasen, BB,

OO, or Mdsq.

Next, we compared in Table 12 the averaged running time (in seconds) required

by every pruning technique over all datasets. Experimentation was conducted on a 3.6

Ghz Intel Core i7 − 4790 processor with 8 Gb of system memory.

Table 12. Average pruning times (in seconds) of several pruning approaches.

Scg-κ Scg-mi Gasen Mdsq Re OO Kappa CC BB Fs-its Fs-mid

0.320 0.401 36.86 0.015 0.793 0.003 0.174 0.032 0.016 5.770 3.075

Orientation ordering is the fastest technique followed by Mdsq, BB, and CC. Both
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Scg-κ and Scg-mi converge to similar pruning times. The results also indicate that

Gasen and greedy search approaches are slower than the other alternatives. The re-

ported behavior is expected since search-based pruning methods generally tend to have

high computational costs.

6. Conclusion and future work

This paper introduced a game theory-based methodology for ensemble pruning.

We have developed a simple coalitional game for estimating the power of each mem-

ber based on its contribution to the overall ensemble diversity. Additionally, we have

provided a powerful criterion based on the notion of minimal winning coalition (made

of the most powerful members) that allows pruning an ensemble of classifiers. Ex-

perimental results show that SCG-Pruning significantly improves the performance of

the entire ensemble and outperforms some major state-of-the-art selection approaches.

Furthermore, our approach provides a reliable ranking, and succeeds in finding the ap-

propriate number of classifiers to include in the final ensemble. We have noticed that

the thresholds q1 and q2 are of great importance for determining the right size of the

pruned ensemble.

Our future work consists of evaluating SCG-Pruning with other methods for weigh-

ing the ensemble members, and for computing the pairwise diversity. Furthermore, we

will investigate deeply the relationship between the thresholds (q1, q2) and the gener-

alization performance of the pruned ensemble so that they can be set properly for real

world applications.
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