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Introduction (9.1)Introduction (9.1)
• Artificial Neural Networks (NN) have been 

studied since 1950

• Minsky & Papert in their report of perceptron 
(Rosenblatt) expressed pessimism over 
multilayer systems, the interest in NN dwindled 
in the 1970’s

• The work of Rumelhart, Hinton, Williams & 
others, in learning algorithms created a 
resurgence of the lost interest in the field of NN
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Introduction (9.1) (cont.)Introduction (9.1) (cont.)

• Several NN have been proposed & investigated in 
recent years

– Supervised versus unsupervised
– Architectures (feedforward vs. recurrent)
– Implementation (software vs. hardware)
– Operations (biologically inspired vs. psychologically inspired)

• In this chapter, we will focus on modeling problems with 
desired input-output data set, so the resulting networks 
must have adjustable parameters that are updated by a 
supervised learning rule

Perceptrons Perceptrons (9.2)(9.2)
• Architecture & learning rule

– The perceptron was derived from a biological brain 
neuron model introduced by Mc Culloch & Pitts in 
1943

– Rosenblatt designed the perceptron with a view 
toward explaining & modeling pattern recognition 
abilities of biological visual systems

– The following figure illustrate a two-class problem 
that consists of determining whether the input 
pattern is a “p” or not
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The perceptron

PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

– A signal xi is binary, it could be active (or 
excitatory) if its value is 1, inactive if its value 
is 0 and inhibitory is its value is -1
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PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

• Architecture & learning rule (cont.)

– The output unit is a linear threshold element 
with a threshold value θ

– wi is a modifiable weight associated with an 
incoming signal xi

– The threshold θ = w0 can be viewed as the 
connection weight between the output unit & 
a dummy incoming signal x0 = 1

PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

• Architecture & learning rule (cont.)

– f(.) is the activation function of the perceptron 
& is either a signum function sgn(x) or a step 
function step (x)
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PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

• Algorithm (Single-layer perceptron)

1. Start with a set of random connection 
weights

2. Select an input vector x from the 
training data set 
If the perceptron provides a wrong 
response then modify all connection 
weights wi to wi = ηtixi
where: ti is a target output

η is a learning rate
1. Test the weight convergence: if converge 

stop else go to 1

This learning algorithm is based on gradient descent
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PerceptronsPerceptrons (cont.)(cont.)

• Exclusive-OR problem (XOR)

Goal: classify a binary input vector to class 0 if 
the vector has an even number of 1’s, 
otherwise assign it to class 1 

011Desired i/o pair 4
101Desired i/o pair 3
110Desired i/o pair 2
000Desired i/o pair 1

ClassYX

PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

• Exclusive-OR problem (XOR) (cont.)

– From the following figure, we can say that 
the XOR problem is not linearly separable
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PerceptonsPerceptons (9.2) (cont.)(9.2) (cont.)

– Using a single-layer perceptron and the step function 
to solve this problem requires satisfying the following 
inequalities

0 * w1 + 0 * w2 + w0 ≤ 0 ⇔ w0 ≤ 0
0 * w1 + 1 * w2 + w0 > 0 ⇔ w0 > - w2
1 * w1 + 0 * w2 + w0 > 0 ⇔ w0 ≤ - w1
1 * w1 + 1 * w2 + w0 ≤ 0 ⇔ w0 ≤ - w1 – w2

This self of inequalities is self-contradictory
⇒ Minsky & Pappert criticism of perceptron was 

justified in part by this result!

PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)

– The XOR problem can be solved using a 
two-layer perceptron illustrated by the 
following figure
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PerceptronsPerceptrons (9.2) (cont.)(9.2) (cont.)
(x1 = 0, x2 = 0 ⇒ 0) 

results at the hidden layer
0 * (+1) + 0 * (+1) = 0 < 1.5 ⇒ x3 = 0
0 * (+1) + 0 * (+1) = 0 < 0.5 ⇒ x4 = 0
results at the output layer
0 * (-1) + 0 * (+1) = 0 < 0.5 ⇒ x5 = output = 0

(x1 = 0, x2 = 1 ⇒ 1) 
results at the hidden layer
0 * (+1) + 1 * (+1) = 1 < 1.5 ⇒ x3 = 0
1 * (+1) + 0 * (+1) = 1 > 0.5 ⇒ x4 = 1
results at the output layer
0 * (-1) + 1 * (+1) = +1 > 0.5 ⇒ x5 = output = 1

In summary, multilayer perceptrons can solve nonlinearly separable 
problems and are thus more powerful than the single-layer 
perceptrons

ADALINE (9.3) ADALINE (9.3) 

• Developed by Widrow & Hoff, this model 
represents a classical example of the 
simplest intelligent self-learning system 
that can adapt itself to achieve a given 
modeling task
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Adaline (Adaptive linear element)

ADALINE (9.3) (cont.)ADALINE (9.3) (cont.)

• One possible implementation of ADALINE is the 
following:

– The input signals are voltages
– The weights wi are conductances of controllable resistors
– The network output is the summation of the currents caused by 

the input voltages

– The problem consists of finding a suitable set of 
conductances such that the input-output behavior of ADALINE 
is close to a set of desired input-output data points
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ADALINE (9.3) (cont.)ADALINE (9.3) (cont.)

• The ADALINE model can be solved using a linear least-
square method, (n +1) linear parameters in order to 
minimize the error 

• However, since this method can be slow (requires too 
many calculations!) if n is large, therefore Widrow & 
Hoff fell back on gradient descent 
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Backpropagation Multilayer Perceptrons Backpropagation Multilayer Perceptrons (9.4)(9.4)

• There was a change in 1985 of the reformulation of the 
backpropagation training method by Rumelhart

• The signum and the step functions are not 
differentiable, the use of logistic (hyperbolic) functions 
contribute for a better learning scheme
– Logistic: f(x) = 1 / (1 + e-x)
– Hyperbolic tangent: f(x) = tanh(x/2) = (1 – e-x) / (1 + e-x)
– Identity: f(x) = x

• The signum function is approximated by the hyberbolic 
tangent function & the step function is approximated by 
the logistic function



CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 9: Supervised Learning Neural Networks 11

Activation functions for backpropagation MLPs

Backpropagation Multilayer Perceptrons Backpropagation Multilayer Perceptrons (9.4) (cont.)(9.4) (cont.)

• Backpropagation learning rule

Principle:
The net input  of a node is defined as the 
weighted sum of the incoming signals plus a bias 
term:

Where: xi = ouptput of node i at any of the previous layers
wij = weight associated with the link connecting 

nodes i & j
wj = bias of node j
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Node j of a backpropagation MLP

Backpropagation Multilayer PerceptronsBackpropagation Multilayer Perceptrons (9.4) (cont.)(9.4) (cont.)

• The following figure shows a two-layer 
backpropagation MLP with 3 inputs in the input 
layer, 3 neurons in the hidden layer & 2 output 
neurons in the output layer
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A 3-3-2 backpropagation MLP

Backpropagation Multilayer PerceptronsBackpropagation Multilayer Perceptrons (9.4) (cont.)(9.4) (cont.)

– The square error measure for the p-th input-output pair is 
defined as:

where: dk = desired output for node k
xk = actual output for node k when the p-th data 

pair is presented

• Since it is a propagation scheme, an error term   
for node i is needed:

Using a chain rule derivation, we obtain:
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Backpropagation Multilayer PerceptronsBackpropagation Multilayer Perceptrons (9.4) (cont.)(9.4) (cont.)

• Algorithm (Stochastic backpropagation)

Begin initialize number-of-hidden-units, 
w, criterion θ,η, m (training data size)

Do m m + 1
xm randomly chosen pattern

wk,I wk,I + η xk
Until ||∇E(w)|| < θ

Return w

End.

iε

Radial Basis Function Networks (9.5)Radial Basis Function Networks (9.5)

• Architectures & Learning Methods

– Inspired by research in regions of the cerebral 
cortex & the visual cortex, RBFNs have been 
proposed by Moody & Darken in 1988 as a 
supervised learning neural networks

– The activation level of the ith receptive field unit is:
wi = Ri(x) = Ri (||x – ui|| / σi), i = 1, 2, …, H

• x is a multidimensional input vector
• ui is a vector with same dimension as x
• H is the number of radial basis functions called also 

receptive field units
• Ri(.) is the ith radial basis function with a single maximum 

at the origin
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Single-output RBFN that uses weighted sum

Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Architectures & Learning Methods (cont.)

– Ri(.) is either a Gaussian function

or a logistic function

if x = ui ⇒ = 1 (Maximum) &       = ½ (Maximum)
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Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Architectures & Learning Methods (cont.)

– The output of an RBFN 

• (weighted sum)

where ci = output value associated with the ith 
receptive field

• (weighted average)
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Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Architectures & Learning Methods (cont.)

– Moody-Darken’s RBFN may be extended by 
assigning a linear function to the output function of 
each receptive field

(ai is a parameter vector & bi is a scalar parameter)

– Supervised adjustments of the center & shape of 
the receptive field (or radial basis) functions may 
improve RBFNs approximation capacity

– Several learning algorithms have been proposed to 
identify the parameters (ui, σI & ci) of an RBFN

bxac T
ii +=

Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Functional Equivalence to FIS

– The extended RBFN response given by the 
weighted sum or the weighted average is identical 
to the response produced by the first-order Sugeno 
fuzzy inference system provided that the 
membership functions, the radial basis function are 
chosen correctly

iii bx.ac += rr

( ) ( )

[ ] [ ]Tm21
Tm

i
2
i

1
ii

Hi

1i

Hi

1i
iiiii

x,...,x,xx,u,...,u,uu:where

vxu)x(w bxa)x(d

==

+=+= ∑ ∑
=

=

=

=

rr

rrrr



CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 9: Supervised Learning Neural Networks 18

Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Functional Equivalence to FIS (CONT.)

– While the RBFN consists of radial basis 
functions, the FIS comprises a certain 
number of membership functions

– The FIS & the RBFN were developed on 
different bases, they are rooted in the same 
soil

Radial Basis Function Networks (9.5)(cont.)Radial Basis Function Networks (9.5)(cont.)

• Functional Equivalence to FIS (cont.)

– Condition of equivalence between FIS & RBFN

• RBFN & FIS use both of them the same aggregation 
method (weighted average & weighted sum)

• The number of receptive field units in RBFN is equal to 
the number of fuzzy if-then rules in the FIS

• Each radial basis function of the RBFN is equal to a 
multidimensional composite MF of the premise part of a 
fuzzy rule in the FIS

• Corresponding radial basis & fuzzy rule should have the 
same response function
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Radial Basis Function Networks  (9.5) (cont.)Radial Basis Function Networks  (9.5) (cont.)

• Interpolation & approximation RBFN

– The interpolation case: each RBF is assigned to 
each training pattern

Goal: Estimate a function d(.) that yields exact 
desired outputs for all training data

• Our goal consists of finding ci (i = 1, 2, …, n) 
(n = H) such that d(xi) = oi = desired output 

since wi = Ri (||x – ui||) = exp [- (x – ui)2 / (2 )]
Therefore, starting with xi as centers for the 
RBFNs, we can write:
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Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Interpolation & approximation RBFN 
(cont.)

– The interpolation case (cont.)

• For given σi (i = 1, …, n), we obtain the 
following n simultaneous linear equations 
with respect to unknown weights ci (i = 1, 
2, …, n)
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Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)
– The interpolation case (cont.)
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Radial Basis Function Networks (9.5) (cont.)Radial Basis Function Networks (9.5) (cont.)

• Interpolation & approximation RBFN (cont.)

– Approximation RBFN

• This corresponds to the case when there are 
fewer basis functions than there are available 
training patterns

• In this case, the matrix G is rectangular & the 
least square methods are commonly used in 
order to find the vector C
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