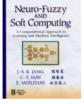
Chapter 9: Supervised Learning Neural Networks

- Introduction (9.1)
- Perceptrons (9.2)
- Adaline (9.3)
- Backpropagation Multilayer Perceptrons (9.4)
- Radial Basis Function Networks (9.5)



Jyh-Shing Roger Jang et al., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, First Edition, Prentice Hall, 1997

Introduction (9.1)

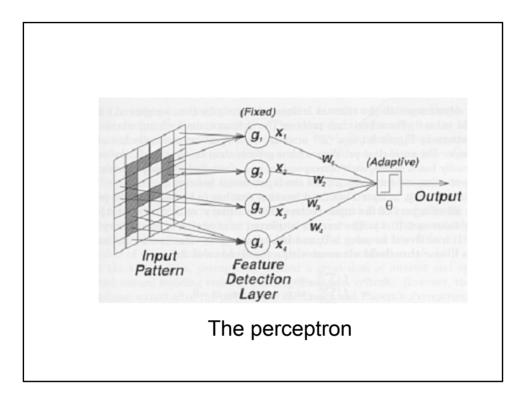
- Artificial Neural Networks (NN) have been studied since 1950
- Minsky & Papert in their report of perceptron (Rosenblatt) expressed pessimism over multilayer systems, the interest in NN dwindled in the 1970's
- The work of Rumelhart, Hinton, Williams & others, in learning algorithms created a resurgence of the lost interest in the field of NN

Introduction (9.1) (cont.)

- Several NN have been proposed & investigated in recent years
 - Supervised versus unsupervised
 - Architectures (feedforward vs. recurrent)
 - Implementation (software vs. hardware)
 - Operations (biologically inspired vs. psychologically inspired)
- In this chapter, we will focus on modeling problems with desired input-output data set, so the resulting networks must have adjustable parameters that are updated by a supervised learning rule

Perceptrons (9.2)

- · Architecture & learning rule
 - The perceptron was derived from a biological brain neuron model introduced by Mc Culloch & Pitts in 1943
 - Rosenblatt designed the perceptron with a view toward explaining & modeling pattern recognition abilities of biological visual systems
 - The following figure illustrate a two-class problem that consists of determining whether the input pattern is a "p" or not



$$\begin{split} & \mathbf{f} \left(\sum_{i=1}^{i=n} \mathbf{w}_i \mathbf{x}_i - \theta \right) = \mathbf{Output} \\ & = \mathbf{f} \left(\sum_{i=1}^{i=n} \mathbf{w}_i \mathbf{x}_i + \mathbf{w}_o \right), \mathbf{w}_o \equiv -\theta \\ & = \mathbf{f} \left(\sum_{i=1}^{i=n} \mathbf{w}_i \mathbf{x}_i \right), \ \mathbf{x}_o \equiv \mathbf{1} \end{split}$$

 A signal xi is binary, it could be active (or excitatory) if its value is 1, inactive if its value is 0 and inhibitory is its value is -1

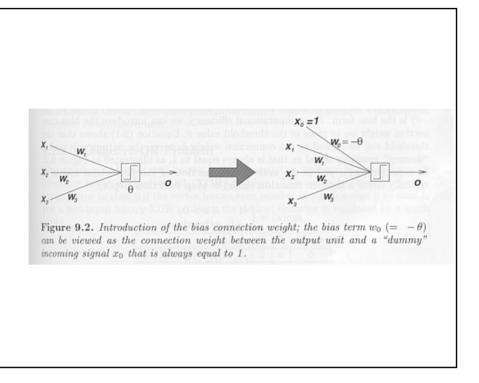
- Architecture & learning rule (cont.)
 - The output unit is a linear threshold element with a threshold value θ
 - wi is a modifiable weight associated with an incoming signal xi
 - The threshold θ = w0 can be viewed as the connection weight between the output unit & a dummy incoming signal x0 = 1

Perceptrons (9.2) (cont.)

- Architecture & learning rule (cont.)
 - f(.) is the activation function of the perceptron
 & is either a signum function sgn(x) or a step function step (x)

$$sgn(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{otherwise} \end{cases}$$

$$step(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$



- Algorithm (Single-layer perceptron)
- 1. Start with a set of random connection weights
- 2. Select an input vector x from the training data set

 If the perceptron provides a wrong response then modify all connection weights wi to wi = η tixi

where: ti is a target output η is a learning rate

1. Test the weight convergence: if converge stop else go to 1

This learning algorithm is based on gradient descent

Perceptrons (cont.)

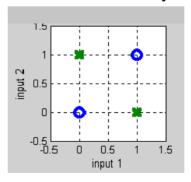
Exclusive-OR problem (XOR)

Goal: classify a binary input vector to class 0 if the vector has an even number of 1's, otherwise assign it to class 1

	Х	Y	Class
Desired i/o pair 1	0	0	0
Desired i/o pair 2	0	1	1
Desired i/o pair 3	1	0	1
Desired i/o pair 4	1	1	0

Perceptrons (9.2) (cont.)

- Exclusive-OR problem (XOR) (cont.)
 - From the following figure, we can say that the XOR problem is not linearly separable



 Using a single-layer perceptron and the step function to solve this problem requires satisfying the following inequalities

$$0 * w1 + 0 * w2 + w0 \le 0 \Leftrightarrow w0 \le 0$$

 $0 * w1 + 1 * w2 + w0 > 0 \Leftrightarrow w0 > - w2$
 $1 * w1 + 0 * w2 + w0 > 0 \Leftrightarrow w0 \le - w1$
 $1 * w1 + 1 * w2 + w0 \le 0 \Leftrightarrow w0 \le - w1 - w2$

This self of inequalities is self-contradictory

⇒ Minsky & Pappert criticism of perceptron was justified in part by this result!

Perceptrons (9.2) (cont.)

 The XOR problem can be solved using a two-layer perceptron illustrated by the following figure

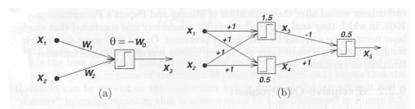


Figure 9.4. Perceptrons for the two-input exclusive-OR problem: (a) the single-layer perceptron, and (b) the two-layer perceptron. Both use the step function as the activation function for each node.

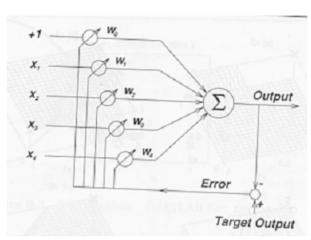
```
(x1 = 0, x2 = 0 \Rightarrow 0)
results at the hidden layer
0 * (+1) + 0 * (+1) = 0 < 1.5 \Rightarrow x3 = 0
0 * (+1) + 0 * (+1) = 0 < 0.5 \Rightarrow x4 = 0
results at the output layer
0 * (-1) + 0 * (+1) = 0 < 0.5 \Rightarrow x5 = \text{output} = 0

(x1 = 0, x2 = 1 \Rightarrow 1)
results at the hidden layer
0 * (+1) + 1 * (+1) = 1 < 1.5 \Rightarrow x3 = 0
1 * (+1) + 0 * (+1) = 1 > 0.5 \Rightarrow x4 = 1
results at the output layer
0 * (-1) + 1 * (+1) = +1 > 0.5 \Rightarrow x5 = \text{output} = 1
```

In summary, multilayer perceptrons can solve nonlinearly separable problems and are thus more powerful than the single-layer perceptrons

ADALINE (9.3)

 Developed by Widrow & Hoff, this model represents a classical example of the simplest intelligent self-learning system that can adapt itself to achieve a given modeling task



Adaline (Adaptive linear element)

ADALINE (9.3) (cont.)

$$output = \sum_{i=1}^{n} w_i x_i + w_0$$

- One possible implementation of ADALINE is the following:
 - The input signals are voltages
 - The weights wi are conductances of controllable resistors
 - The network output is the summation of the currents caused by the input voltages
 - The problem consists of finding a suitable set of conductances such that the input-output behavior of ADALINE is close to a set of desired input-output data points

ADALINE (9.3) (cont.)

 The ADALINE model can be solved using a linear leastsquare method, (n +1) linear parameters in order to minimize the error

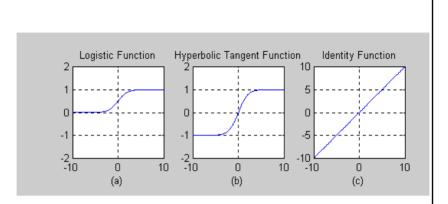
$$\sum_{p=1}^{m} (t_p - o_p)^2 \quad \text{(m training data)}$$

 However, since this method can be slow (requires too many calculations!) if n is large, therefore Widrow & Hoff fell back on gradient descent

if
$$E_p = (t_p - o_p)^2 \Rightarrow \frac{\partial E_p}{\partial w_i} = -2(t_p - o_p) * x_i$$
 (Least-mean square (LMS) learning which provides: $w_{next}^p = w_{now}^p + \eta \underbrace{(t_p - o_p) * x_i}_{g}$ procedure)

Backpropagation Multilayer Perceptrons (9.4)

- There was a change in 1985 of the reformulation of the backpropagation training method by Rumelhart
- The signum and the step functions are not differentiable, the use of logistic (hyperbolic) functions contribute for a better learning scheme
 - Logistic: f(x) = 1 / (1 + e-x)
 - Hyperbolic tangent: $f(x) = \tanh(x/2) = (1 e-x) / (1 + e-x)$
 - Identity: f(x) = x
- The signum function is approximated by the hyberbolic tangent function & the step function is approximated by the logistic function



Activation functions for backpropagation MLPs

Backpropagation Multilayer Perceptrons (9.4) (cont.)

Backpropagation learning rule

Principle:

The net input $\overline{\mathbf{X}}$ of a node is defined as the weighted sum of the incoming signals plus a bias term:

$$\bar{\mathbf{x}}_{j} = \sum_{i} \mathbf{w}_{ij} \mathbf{x}_{i} + \mathbf{w}_{j}$$

$$\mathbf{x}_{j} = \mathbf{f}(\bar{\mathbf{x}}_{j}) = \frac{1}{1 + \exp(-\bar{\mathbf{x}}_{j})}$$
(Logistic function)

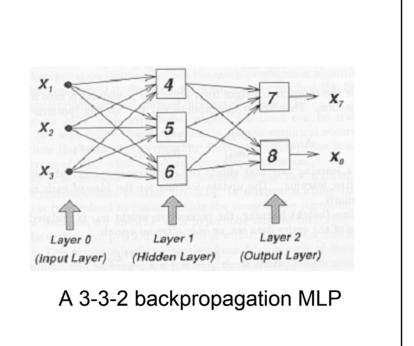
Where: x_i = ouptput of node i at any of the previous layers w_{ij} = weight associated with the link connecting nodes i & j w_j = bias of node j



Node j of a backpropagation MLP

Backpropagation Multilayer Perceptrons (9.4) (cont.)

 The following figure shows a two-layer backpropagation MLP with 3 inputs in the input layer, 3 neurons in the hidden layer & 2 output neurons in the output layer



Backpropagation Multilayer Perceptrons (9.4) (cont.)

The square error measure for the p-th input-output pair is defined as:

 $E_p = \sum_{k} (d_k - x_k)^2$

where: d_k = desired output for node k x_k = actual output for node k when the p-th data

pair is presented

Since it is a propagation scheme, an error term $\overline{\mathbf{\epsilon}_i}$ for node i is needed: $\partial^+\mathbf{E}_-$

 $\overline{\epsilon}_i = \frac{\partial^+ E_p}{\partial \overline{x}_i}$

Using a chain rule derivation, we obtain:

$$\mathbf{w}_{k,i}^{next} = \underbrace{\mathbf{w}_{k,i}^{now} - \eta \nabla_{\mathbf{w}_{k,i}} \mathbf{E}}_{\text{steepest descent}} = \mathbf{w}_{k,i}^{now} - \eta \overline{\epsilon}_i \mathbf{x}_k$$

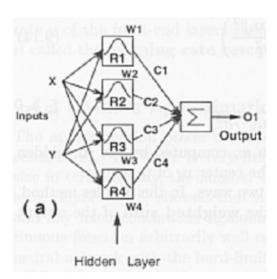
Backpropagation Multilayer Perceptrons (9.4) (cont.)

Algorithm (Stochastic backpropagation)

```
\begin{array}{c} \underline{\textbf{Begin initialize}} & \text{number-of-hidden-units,} \\ \textbf{w, criterion } \theta, \eta, \textbf{ m (training data size)} \\ \underline{\textbf{Do}} & \textbf{m} \leftarrow \textbf{m} + 1 \\ & \textbf{x}^{\textbf{m}} \leftarrow \textbf{randomly chosen pattern} \\ & \textbf{w}_{\textbf{k}, \textbf{I}} \leftarrow \textbf{w}_{\textbf{k}, \textbf{I}} + \eta \ \overline{\textbf{E}}_{\textbf{i}} \, \textbf{x}_{\textbf{k}} \\ & \underline{\textbf{Until}} \ || \nabla \textbf{E} (\textbf{w}) \ || < \theta \\ \underline{\textbf{Return}} & \textbf{w} \\ \\ \underline{\textbf{End.}} \end{array}
```

Radial Basis Function Networks (9.5)

- Architectures & Learning Methods
 - Inspired by research in regions of the cerebral cortex & the visual cortex, RBFNs have been proposed by Moody & Darken in 1988 as a supervised learning neural networks
 - The activation level of the ith receptive field unit is: $w_i = R_i(x) = R_i (||x u_i|| / \sigma_i)$, i = 1, 2, ..., H
 - · x is a multidimensional input vector
 - u_i is a vector with same dimension as x
 - H is the number of radial basis functions called also receptive field units
 - R_i(.) is the ith radial basis function with a single maximum at the origin



Single-output RBFN that uses weighted sum

Radial Basis Function Networks (9.5) (cont.)

- Architectures & Learning Methods (cont.)
 - R_i(.) is either a Gaussian function

$$\mathbf{R_{i}^{G}}(\mathbf{x}) = \exp\left(-\frac{\left\|\mathbf{x} - \mathbf{u_{i}}\right\|^{2}}{2\sigma_{i}^{2}}\right)$$

or a logistic function

$$R_{i}^{L}(x) = \frac{1}{1 + \exp[\|x - u_{i}\|^{2} / \sigma_{i}^{2}]}$$

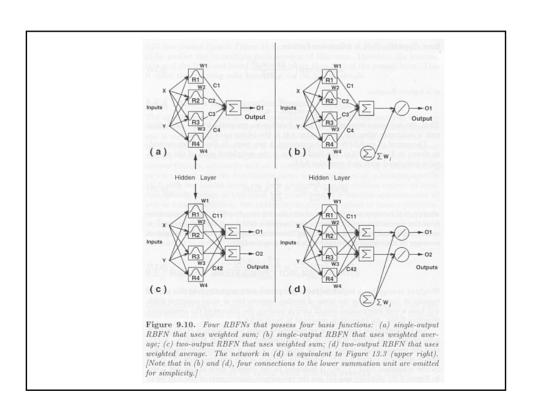
if x = $u_i \Rightarrow \mathbf{R_i^G}$ = 1 (Maximum) & $\mathbf{R_i^L}$ = ½ (Maximum)

- Architectures & Learning Methods (cont.)
 - The output of an RBFN

•
$$d(x) = \sum_{i=1}^{i=H} c_i w_i = \sum_{i=1}^{i=H} c_i R_i(x)$$
 (weighted sum)

where c_i = output value associated with the ith receptive field

•
$$\mathbf{d}(\mathbf{x}) = \frac{\sum\limits_{i=1}^{i=H} c_i \mathbf{w}_i}{\sum\limits_{i=1}^{i=H} \mathbf{w}_i} = \frac{\sum\limits_{i=1}^{i=H} c_i \mathbf{R}_i(\mathbf{x})}{\sum\limits_{i=1}^{i=H} \mathbf{R}_i(\mathbf{x})} \qquad \text{(weighted average)}$$



- Architectures & Learning Methods (cont.)
 - Moody-Darken's RBFN may be extended by assigning a linear function to the output function of each receptive field
 c: = a: x + b

(a_i is a parameter vector & b_i is a scalar parameter)

- Supervised adjustments of the center & shape of the receptive field (or radial basis) functions may improve RBFNs approximation capacity
- Several learning algorithms have been proposed to identify the parameters (u_i , σ_i & c_i) of an RBFN

Radial Basis Function Networks (9.5) (cont.)

Functional Equivalence to FIS

$$\mathbf{c_i} = \mathbf{\bar{a}_i} \cdot \mathbf{\bar{x}} + \mathbf{b_i}$$

 The extended RBFN response given by the weighted sum or the weighted average is identical to the response produced by the first-order Sugeno fuzzy inference system provided that the membership functions, the radial basis function are chosen correctly

$$d(x) = \sum_{i=1}^{i=H} (\vec{a}_i \vec{x} + b_i) w_i(x) = \sum_{i=1}^{i=H} (\vec{u}_i \vec{x} + v_i)$$

where :
$$\vec{u}_i = [u_i^1, u_i^2, ..., u_i^m]^T, \vec{x} = [x_1, x_2, ..., x_m]^T$$

- Functional Equivalence to FIS (CONT.)
 - While the RBFN consists of radial basis functions, the FIS comprises a certain number of membership functions
 - The FIS & the RBFN were developed on different bases, they are rooted in the same soil

Radial Basis Function Networks (9.5)(cont.)

- Functional Equivalence to FIS (cont.)
 - Condition of equivalence between FIS & RBFN
 - RBFN & FIS use both of them the same aggregation method (weighted average & weighted sum)
 - The number of receptive field units in RBFN is equal to the number of fuzzy if-then rules in the FIS
 - Each radial basis function of the RBFN is equal to a multidimensional composite MF of the premise part of a fuzzy rule in the FIS
 - Corresponding radial basis & fuzzy rule should have the same response function

- Interpolation & approximation RBFN
 - The interpolation case: each RBF is assigned to each training pattern

<u>Goal:</u> Estimate a function d(.) that yields exact desired outputs for all training data

Our goal consists of finding c_i (i = 1, 2, ..., n)
 (n = H) such that d(x_i) = o_i = desired output

since $w_i = R_i (||x - u_i||) = \exp \left[-(x - u_i)^2 / (2 \sigma_i^2)\right]$ Therefore, starting with x_i as centers for the RBFNs, we can write: $\frac{n}{2} \left[-(x - x_i)^2 / (x - x_$

 $d(x) = \sum_{i=1}^{n} c_{i} \exp \left[-\frac{(x - x_{i})^{2}}{2\sigma_{i}^{2}} \right]$

Radial Basis Function Networks (9.5) (cont.)

- Interpolation & approximation RBFN (cont.)
 - The interpolation case (cont.)
 - For given σ_i (i = 1, ..., n), we obtain the following n simultaneous linear equations with respect to unknown weights c_i (i = 1, 2, ..., n)

The interpolation case (cont.)

First pattern
$$d(x_1) = \sum_{i=1}^{n} c_i \exp\left[-\frac{(x_1 - x_i)^2}{2\sigma_i^2}\right] = d_1$$

Second pattern $d(x_2) = \sum_{i=1}^{n} c_i \exp\left[-\frac{(x_2 - x_i)^2}{2\sigma_i^2}\right] = d_2$

:

In the pattern $d(x_n) = \sum_{i=1}^{n} c_i \exp\left[-\frac{(x_n - x_i)^2}{2\sigma_i^2}\right] = d_n$
 $D = GC$ where $D = [d_1, d_2, ..., d_n]^T$, $C = [c_1, c_2, ..., c_n]^T$, and $G = \exp$ onential function values

 $C = G^{-1}D$ (optimal weights if G is nonsigular)

Radial Basis Function Networks (9.5) (cont.)

- Interpolation & approximation RBFN (cont.)
 - Approximation RBFN

1

- This corresponds to the case when there are fewer basis functions than there are available training patterns
- In this case, the matrix G is rectangular & the least square methods are commonly used in order to find the vector C