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Chapter 7 (Part 2): 
Relations

Representing Relations (7.3)

Equivalence Relations (7.5)
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Representing Relations (7.3)

First way is to list the ordered pairs

Second way is through matrices

Third way is through direct graphs
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Representing Relations (7.3)

Representing relations through matrices

– Example: Suppose that the relation R on a set is 
represented by the matrix:

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Since all the diagonal elements of this 
matrix are equal to 1, R is reflexive. Moreover, since 
MR is symmetric ⇒ R is symmetric. R is not 
antisymmetric.
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Representing Relations (7.3)

Representing relations using diagraphs

– Definition 1:

A directed graph, or diagraph, consists of a 
set V of vertices (or nodes) together with a 
set E of ordered pairs of elements of V called 
edges (or arcs). The vertex a is called the 
initial vertex of the edge (a, b), and the vertex 
b is called the terminal vertex of this edge.
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Representing Relations (7.3)

– Example: The directed graph with vertices a, 
b, c and d , and edges (a,b), (a,d), (b,b), 
(b,d), (c,a) and (d,b). The edge (b,b) is called 
a loop.
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Equivalence Relations (7.5)
Students registration time with respect to the 
first letter of their names

R contains (x,y) ⇔ x and y are students with 
last names beginning with letters in the same 
block

3 blocks are considered: A-F, G-O, P-Z

R is reflexive, symmetric & transitive

The set of student is therefore divided in 3 
classes depending on the first letter of their 
names
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Equivalence Relations (7.5)

Definition 1

A relation on a set A is called an equivalence relation if 
it is reflexive, symmetric and transitive.

Examples
: 
– Suppose that R is the relation on the set of strings of English 

letters such that aRb if and only if l(a) = l(b), where l(x) is the 
length of the string x. Is R an equivalence relation?
Solution: R is reflexive, symmetric and transitive ⇒ R is an 
equivalence relation

– A divides b; is it an equivalence relation?

Equivalence Relations (7.5)

Equivalence classes

– Definition 2:

Let R be an equivalence relation on a set A. 
The set of all elements that are related to an 
element a of A is called the equivalence class 
of a. The equivalence class of a with respect 
to R is denoted by [a]R. When only one 
relation is under consideration, we will delete 
the subscript R and write [a] for this 
equivalence class.
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Equivalence Relations (7.5)
– Example: What are the equivalences classes of 0 

and 1 for congruence modulo 4?

Solution:
The equivalence class of 0 contains all the integers a 
such that a ≡ 0 (mod 4). Hence, the equivalence 
class of 0 for this relation is

[0] = {…, -8, -4, 0, 4, 8, …}

The equivalence class of 1 contains all the integers a 
such that a ≡ 1 (mod 4). The integers in this class are 
those that have a remainder of 1 when divided by 4. 
Hence, the equivalence class of 1 for this relation is

[1] = {…, -7, -3, 1, 5, 9, …}

Equivalence Relations (7.5)

Equivalence classes & partitions

– Theorem 1:

Let R be an equivalence relation on a set A. 
These statements are equivalent:

i. a R b
ii. [a] = [b]
iii. [a] ∩ [b] ≠ ∅
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Equivalence Relations (7.5)

– Theorem 2:

Let R be an equivalence relation on a set S. 
Then the equivalence classes of R form a 
partition of S. Conversely, given a partition 
{Ai | i ∈I} of the set S, there is an equivalence 
relation R that has the sets Ai , i ∈ I, as its 
equivalence classes.

Equivalence Relations (7.5)

– Example: List the ordered pairs in the equivalence 
relation R produced by the partition A1 = [1,2,3},
A2 = {4,5} and A3 = {6} of S = {1,2,3,4,5,6}

Solution: The subsets in the partition are the 
equivalences classes of R. The pair (a,b) ∈ R if and 
only if a and b are in the same subset of the partition. 

The pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), 
(3,2) and (3,3) ∈ R ⇐ A1 = [1,2,3} is an equivalence 
class. The pairs (4,4), (4,5), (5,4) and (5,5) ∈ R ⇐
A2 = {4,5} is an equivalence class.
The pair (6,6) ∈ R ⇐ {6} is an equivalence class.

No pairs other than those listed belongs to R.
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