
CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 1

Chapter 3 (Part 3):
Mathematical Reasoning, Induction
& Recursion

Recursive Algorithms (3.5)

Program Correctness (3.6)

Recursive Algorithm (3.5)

Goal: Reduce the solution to a problem with a
particular set of input to the solution of the same
problem with smaller input values

Example:
gcd(a,b) = gcd(b mod a, a)

gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 2

Recursive algorithm (.5) (cont.)

Definition 1:

An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input.

Example: Give a recursive algorithm for computing
an; a ≠ 0, n>0

Solution: an+1 = a*an for n>0 a0 = 1

Recursive algorithm (.5) (cont.)

A recursive algorithm for computing an

Procedure power(a: nonzero real number,
n: nonnegative integer)

if n = 0 then power(a, n):= 1
Else power(a,n) := a * power(a, n-1)

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 3

Recursive algorithm (.5) (cont.)

Example: Give a recursive algorithm for computing
the greatest common divisor of two nonnegative
integers a and b (a<b)

Solution:
gcd(a,b) = gcd(b mod, a)
and the condition gcd(0,b) = b (b>0).

Recursive algorithm (.5) (cont.)

A recursive algorithm for computing gcd(a,b)

procedure gcd(a, b: nonnegative integers
with a<b)

if a = 0 then gcd(a,b) := b
else gcd(a,b) := gcd(b mod a, a)

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 4

Recursive algorithm (.5) (cont.)
Example: Express the linear search as a recursive
procedure: search x in the search sequence
aiai+1… aj.

A Recursive linear search algorithm

procedure search(i, j, x)
if ai = x then
location := i

else if i = j then
location := 0

else
search(i + 1, j,x)

Recursive algorithm (.5) (cont.)

Recursion & iteration

We need to express the value of a function at a
positive integer in terms of the value of the
function at smaller integers

Example: Compute a recursive procedure for the
evaluation of n!

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 5

Recursive algorithm (.5) (cont.)

A recursive procedure for factorials

procedure factorial(n: positive integer
if n = 1 then

factorial(n) := 1
else

factorial(n) := n * factorial(n - 1)

Recursive algorithm (.5) (cont.)

Recursion & iteration (cont.)

However, instead of reducing the computation to
the evaluation of the function at smaller integers,
we can start by 1 and explore larger in an
iterative way

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 6

Recursive algorithm (.5) (cont.)

An iterative procedure for factorials

procedure iterative factorial(n: positive
integer)
x := 1
for i := 1 to n

x := i * x
{x is n!}

Recursive algorithm (.5) (cont.)

Recursion & iteration (cont.)

An other example is the recursive algorithm for
Fibonacci numbers

procedure fibonacci(n: nonnegative integer)
if n = 0 then fibonacci(0) := 0
else if n = 1 then fibonacci(1) := 1
else fibonacci(n) := fibonacci(n – 1) +

fibonacci(n – 2)

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 7

Recursive algorithm (.5) (cont.)
An iterative algorithm for computing Fibonacci numbers

procedure iterative fibonacci(n: nonnegative integer)
if n = 0 then y := 0
else
begin

x := 0
y := 1
for i := 1 to n – 1
begin

z := x + y
x := y
y := z

end
end
{y is the nth Fibonacci number}

Program Correctness (3.6)

Introduction

Question: How can we be sure that a program always
produces the correct answer?

The syntax is correct (all bugs removed!)
Testing a program with a randomly selected sample of
input data is not sufficient
Correctness of a program should be proven!
Theoretically, it is never possible to mechanize the proof
of correctness of complex programs
We will cover some of the concepts and methods that
prove that “simple” programs are corrects

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 8

Program Correctness (3.6) (cont.)

Program verification

To prove that a program is correct, we need two
parts:

1. For every possible input, the correct answer is
obtained if the program terminates

2. The program always terminates

Program Correctness (3.6) (cont.)

Program verification (cont.)

Definition 1:

A program, or program segment, S is said to be partially
correct with respect to the initial assertion p and the final
assertion q if whenever p is true for the input values of S
and S terminates, then q is true for the output values of S.
The notation p{S}q indicates that the program, or program
segment, S is partially correct with respect to the initial
assertion p and the final assertion q.

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 9

Program Correctness (3.6) (cont.)

This definition of partial correctness (has nothing to do
whether a program terminates) is due to Tony Hoare

Example: Show that the program segment
y := 2
z := x + y

is correct with respect to the initial assertion p: x =1 and
the final assertion q: z =3.

Solution: p is true ⇒ x = 1 ⇒ y := 2 ⇒ z := 3 ⇒ partially
correct w.r.t. p and q

Program Correctness (3.6) (cont.)

Rules of inference

Goal: Split the program into a series of subprograms and
show that each subprogram is correct. This is done
through a rule of inference.

The program S is split into 2 subprograms S1 and S2
(S = S1; S2)

Assume that we have S1 correct w.r.t. p and q (initial and
final assertions)

Assume that we have S2 correct w.r.t. q and r (initial and
final assertions)

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 10

Program Correctness (3.6) (cont.)
It follows:

“if p is true ∧ (S1 executed and terminates) then q is true”
“if q is true ∧ (S2 executed and terminates) then r is true”
“thus, if p = true and S = S1; S2 is executed and terminates
then r = true”

This rule of inference is known as the composition rule.

It is written as:
p {S1}q
q {S2}r

∴p {S1; S2) r

Program Correctness (3.6) (cont.)

Conditional Statements

Assume that a program segment has the following form:

1. “if condition then S” where S is a block of statement

Goal: Verify that this piece of code is correct

Strategy:
a) We must show that when p is true and condition is also

true, then q is true after S terminates
b) We also must show that when p is true and condition is

false, then q is true

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 11

Program Correctness (3.6) (cont.)
We can summarize the conditional statement as:

(p ∧ condition) {S}q
(p ∧ ¬condition) ⇒ q

∴p {if condition then S) q

Example: Verify that the following program segment is
correct w.r.t. the initial assertion T and the final assertion
y ≥ x

if x > y then
y:= x

Solution:
a) If T = true and x>y is true then the final assertion y ≥x is true
b) If T = true and x>y is false then x ≤y is true ⇒ final assertion

is true again

Program Correctness (3.6) (cont.)

2. “if condition then S1 else S2”
if condition is true then S1 executes; otherwise S2
executes

This piece of code is correct if:

a) If p = true ∧ condition = true ⇒ q = true after S1
terminates

b) If p = true ∧ condition = false ⇒ q = true after S2
terminates

(p ∧ condition) {S1}q
(p ∧ ¬condition) {S2}q

∴p {if condition then S1 else S2) q

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 12

Program Correctness (3.6) (cont.)

Example: Check that the following program segment
if x < 0 then

abs := -x
else

abs := x
is correct w.r.t. the initial assertion T and the final assertion abs =
|x|.

Solution:
a) If T = true and (x<0) = true ⇒ abs := -x; compatible with definition of

abs
b) If T = true and (x<0)= false ⇒ (x ≥ 0) = true ⇒ abs := x; compatible

with abs definition.

Program Correctness (3.6) (cont.)

Loop invariants

In this case, we prove codes that contain the while loop: “while
condition S”

Goal: An assertion that remains true each time S is executed must be
chosen Such an assertion is called a loop invariant. In other words, p
is a loop invariant if:

(p ∧ condition) {S}p is true

If p is a loop invariant, then if p is true before the program segment is
executed p and ¬condition are true after termination, if it occurs. We
can write the rule of inference as: (p ∧ condition) {S}p

∴p {while condition S} (¬condition ∧ p)

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 13

Program Correctness (3.6) (cont.)

Example: Determine the loop invariant that verifies that
the following program segment terminates with factorial
= n! when n ≥ 0.

i := 1
factorial := 1
While i < n

begin
i := i + 1
factorial := factorial * i

end

Program Correctness (3.6) (cont.)

Solution:

Choose p = (factorial = i! ∧ (i ≤ n))

a) Prove that p is in fact a loop invariant
b) If p is true before execution, p and ¬condition are true

after termination
c) Prove that the while loop terminates

CSE 504 Discrete Structures &
Foundations of Computer Science

Dr. Djamel Bouchaffra

Ch. 3 (Part 3): Sections 3.5 & 3.6 14

Program Correctness (3.6) (cont.)

a) P is a loop invariant:

Suppose p is true at the beginning of the execution of the while loop and
the while condition holds;

⇔ factorial = i! ∧ i < n

inew = i + 1

factorialnew = factorial * (i + 1) = (i + 1)! = inew!

Since i < n ⇒ inew = i + 1 ≤ n

⇒ p true at the end of the execution of the loop

⇒ p is a loop invariant

Program Correctness (3.6) (cont.)

b) Before entering the loop, i = 1 ≤ n and
factorial :=1 = 1! = i! ⇒ (i ≤ n) ∧ (factorial = i!) = true
⇒ p = true

Since p is a loop invariant ⇒ through the inference rule,
if the while loop terminates ⇒ p = true and i < n false
⇒ i = n and factorial = i! = n!

c) While loop terminates:

when the program starts, i = 1
after (n –1) traversals of the loop ⇒ i = n ⇒ stop loop.

	Chapter 3 (Part 3): Mathematical Reasoning, Induction & Recursion
	Recursive Algorithm (3.5)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Recursive algorithm (.5) (cont.)
	Program Correctness (3.6)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)
	Program Correctness (3.6) (cont.)

