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Chapter 3 (Part 3): 
Mathematical Reasoning, Induction 
& Recursion

Recursive Algorithms (3.5)

Program Correctness (3.6)

Recursive Algorithm (3.5)

Goal: Reduce the solution to a problem with a 
particular set  of input to the solution of the same 
problem with smaller input values 

Example:
gcd(a,b) = gcd(b mod a, a)

gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4
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Recursive algorithm (.5) (cont.)

Definition 1:

An algorithm is called recursive if it solves a 
problem by reducing it to an instance of the same 
problem with smaller input.

Example: Give a recursive algorithm for computing 
an; a ≠ 0, n>0

Solution: an+1 = a*an for n>0       a0 = 1

Recursive algorithm (.5) (cont.)

A recursive algorithm for computing an

Procedure power(a: nonzero real number, 
n: nonnegative integer)

if n = 0 then power(a, n):= 1
Else power(a,n) := a * power(a, n-1)
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Recursive algorithm (.5) (cont.)

Example: Give a recursive algorithm for computing 
the greatest common divisor of two nonnegative 
integers a and b (a<b)

Solution:
gcd(a,b) = gcd(b mod, a) 
and the condition gcd(0,b) = b (b>0).

Recursive algorithm (.5) (cont.)

A recursive algorithm for computing gcd(a,b)

procedure gcd(a, b: nonnegative integers 
with a<b)

if a = 0 then gcd(a,b) := b
else gcd(a,b) := gcd(b mod a, a)
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Recursive algorithm (.5) (cont.)
Example: Express the linear search as a recursive 
procedure: search x in the search sequence 
aiai+1… aj.

A Recursive linear search algorithm

procedure search(i, j, x)
if ai = x then
location := i

else if i = j then
location := 0

else
search(i + 1, j,x)

Recursive algorithm (.5) (cont.)

Recursion & iteration

We need to express the value of a function at a 
positive integer in terms of the value of the 
function at smaller integers

Example: Compute a recursive procedure for the 
evaluation of n!
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Recursive algorithm (.5) (cont.)

A recursive procedure for factorials

procedure factorial(n: positive integer
if n = 1 then

factorial(n) := 1
else

factorial(n) := n * factorial(n - 1)

Recursive algorithm (.5) (cont.)

Recursion & iteration (cont.)

However, instead of reducing the computation to 
the evaluation of the function at smaller integers, 
we can start by 1 and explore larger in an 
iterative way
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Recursive algorithm (.5) (cont.)

An iterative procedure for factorials

procedure iterative factorial(n: positive 
integer)
x := 1
for i := 1 to n

x := i * x
{x is n!}

Recursive algorithm (.5) (cont.)

Recursion & iteration (cont.)

An other example is the recursive algorithm for
Fibonacci numbers

procedure fibonacci(n: nonnegative integer)
if n = 0 then fibonacci(0) := 0
else if n = 1 then fibonacci(1) := 1
else fibonacci(n) := fibonacci(n – 1) + 

fibonacci(n – 2)
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Recursive algorithm (.5) (cont.)
An iterative algorithm for computing Fibonacci numbers

procedure iterative fibonacci(n: nonnegative integer)
if n = 0 then y := 0
else
begin

x := 0
y := 1
for i := 1 to n – 1
begin

z := x + y
x := y
y := z

end
end
{y is the nth Fibonacci number}

Program Correctness (3.6)

Introduction

Question: How can we be sure that a program always 
produces the correct answer?

The syntax is correct (all bugs removed!)
Testing a program with a randomly selected sample of 
input data is not sufficient
Correctness of a program should be proven!
Theoretically, it is never possible to mechanize the proof 
of correctness of complex programs
We will cover some of the concepts and methods that 
prove that “simple” programs are corrects
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Program Correctness (3.6) (cont.)

Program verification

To prove that a program is correct, we need two 
parts:

1. For every possible input, the correct answer is 
obtained if the program terminates

2. The program always terminates

Program Correctness (3.6) (cont.)

Program verification (cont.)

Definition 1:

A program, or program segment, S is said to be partially 
correct with respect to the initial assertion p and the final 
assertion q if whenever p is true for the input values of S 
and S terminates, then q is true for the output values of S. 
The notation p{S}q indicates that the program, or program 
segment, S is partially correct with respect to the initial 
assertion p and the final assertion q.
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Program Correctness (3.6) (cont.)

This definition of partial correctness (has nothing to do 
whether a program terminates) is due to Tony Hoare

Example: Show that the program segment 
y := 2
z := x + y

is correct with respect to the initial assertion p: x =1 and 
the final assertion q: z =3.

Solution: p is true ⇒ x = 1 ⇒ y := 2 ⇒ z := 3 ⇒ partially 
correct w.r.t. p and q

Program Correctness (3.6) (cont.)

Rules of inference

Goal: Split the program into a series of subprograms and 
show that each subprogram is correct. This is done 
through a rule of inference.

The program S is split into 2 subprograms S1 and S2
(S = S1; S2)

Assume that we have S1 correct w.r.t. p and q (initial and 
final assertions)

Assume that we have S2 correct w.r.t. q and r (initial and 
final assertions)
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Program Correctness (3.6) (cont.)
It follows:

“if p is true ∧ (S1 executed and terminates) then q is true”
“if q is true ∧ (S2 executed and terminates) then r is true”
“thus, if p = true and S = S1; S2 is executed and terminates 
then r = true”

This rule of inference is known as the composition rule.

It is written as:
p {S1}q
q {S2}r

∴p {S1; S2) r

Program Correctness (3.6) (cont.)

Conditional Statements

Assume that a program segment has the following form:

1. “if condition then S” where S is a block of statement

Goal: Verify that this piece of code is correct

Strategy:
a) We must show that when p is true and condition is also 

true, then q is true after S terminates
b) We also must show that when p is true and condition is 

false, then q is true
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Program Correctness (3.6) (cont.)
We can summarize the conditional statement as:

(p ∧ condition) {S}q
(p ∧ ¬condition) ⇒ q

∴p {if condition then S) q

Example: Verify that the following program segment is 
correct w.r.t. the initial assertion T and the final assertion 
y ≥ x       

if x > y then
y:= x

Solution:
a) If T = true and x>y is true then the final assertion y ≥x is true
b) If T = true and x>y is false then x ≤y is true ⇒ final assertion 

is true again

Program Correctness (3.6) (cont.)

2. “if condition then S1 else S2”
if condition is true then S1 executes; otherwise S2
executes

This piece of code is correct if:

a) If p = true ∧ condition = true ⇒ q = true after S1
terminates

b) If p = true ∧ condition = false ⇒ q = true after S2
terminates

(p ∧ condition) {S1}q
(p ∧ ¬condition) {S2}q

∴p {if condition then S1 else S2) q
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Program Correctness (3.6) (cont.)

Example: Check that the following program segment
if x < 0 then

abs := -x
else

abs := x
is correct w.r.t. the initial assertion T and the final assertion abs = 
|x|.

Solution:
a) If T = true and (x<0) = true ⇒ abs := -x; compatible with definition of 

abs
b) If T = true and (x<0)= false ⇒ (x ≥ 0) = true ⇒ abs := x; compatible 

with abs definition.

Program Correctness (3.6) (cont.)

Loop invariants

In this case, we prove codes that contain the while loop: “while 
condition S”

Goal: An assertion that remains true each time S is executed must be
chosen Such an assertion is called a loop invariant. In other words, p 
is a loop invariant if:

(p ∧ condition) {S}p is true

If p is a loop invariant, then if p is true before the program segment is 
executed p and ¬condition are true after termination, if it occurs. We 
can write the rule of inference as: (p ∧ condition) {S}p

∴p {while condition S} (¬condition ∧ p)
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Program Correctness (3.6) (cont.)

Example: Determine the loop invariant that verifies that 
the following program segment terminates with factorial 
= n! when n ≥ 0.

i := 1
factorial := 1
While i < n

begin
i := i + 1
factorial := factorial * i

end

Program Correctness (3.6) (cont.)

Solution:

Choose p = (factorial = i! ∧ (i ≤ n))

a) Prove that p is in fact a loop invariant
b) If p is true before execution, p and ¬condition are true 

after termination
c) Prove that the while loop terminates
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Program Correctness (3.6) (cont.)

a) P is a loop invariant:

Suppose p is true at the beginning of the execution of the while loop and 
the while condition holds;

⇔ factorial = i! ∧ i < n

inew = i + 1

factorialnew = factorial * (i + 1) = (i + 1)! = inew!

Since i < n ⇒ inew = i + 1 ≤ n

⇒ p true at the end of the execution of the loop

⇒ p is a loop invariant

Program Correctness (3.6) (cont.)

b) Before entering the loop, i = 1 ≤ n and 
factorial :=1 = 1! = i! ⇒ (i ≤ n) ∧ (factorial = i!) = true 
⇒ p = true 

Since p is a loop invariant ⇒ through the inference rule, 
if the while loop terminates ⇒ p = true and i < n false 
⇒ i = n and factorial = i! = n!

c) While loop terminates: 

when the program starts, i = 1
after (n –1) traversals of the loop ⇒ i = n ⇒ stop loop.
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