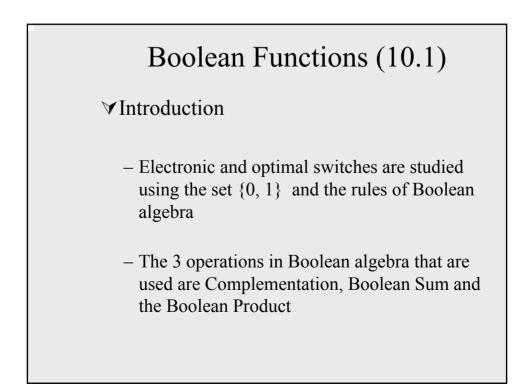
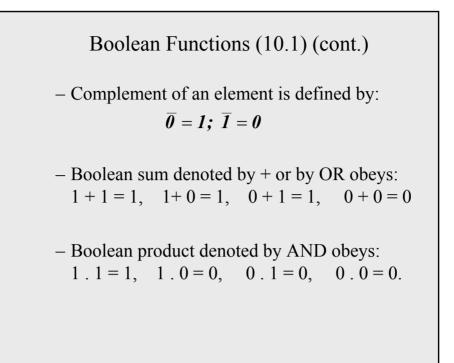
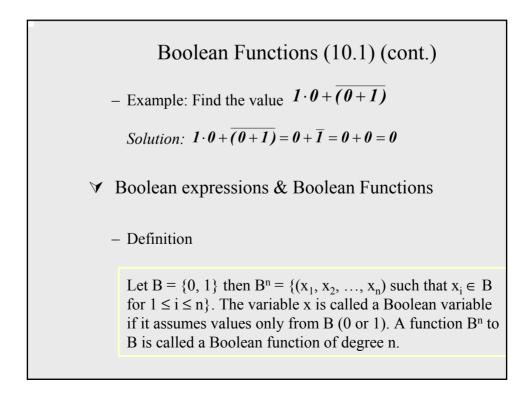
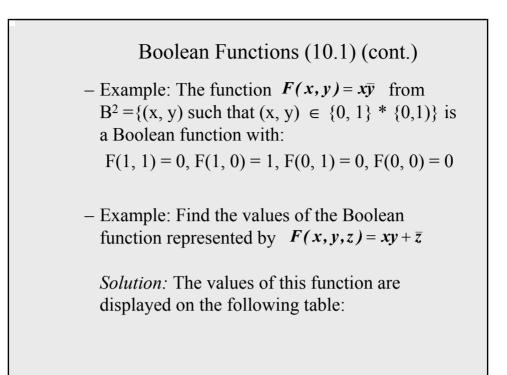


The operation of a circuit is defined by a Boolean function that specifies the value of an output for each set of inputs
 One of the goal is to describe methods for finding a simplified expression (min number of sums and products) that represents a Boolean function (Karnaugh maps).





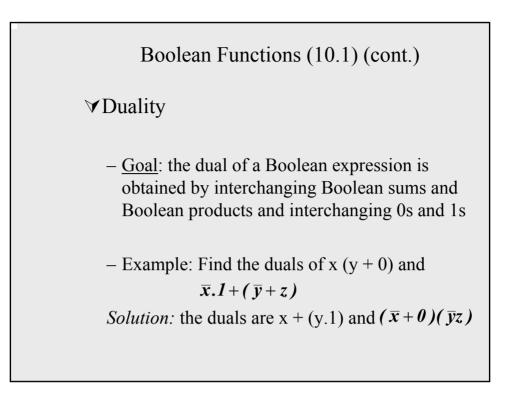


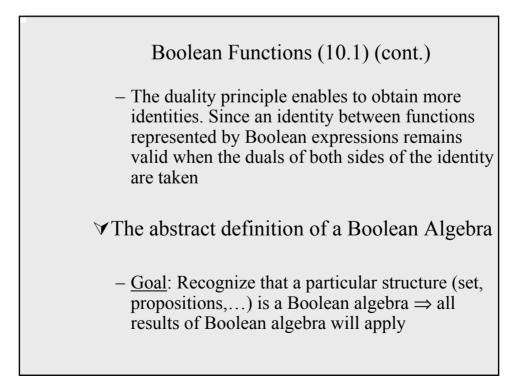


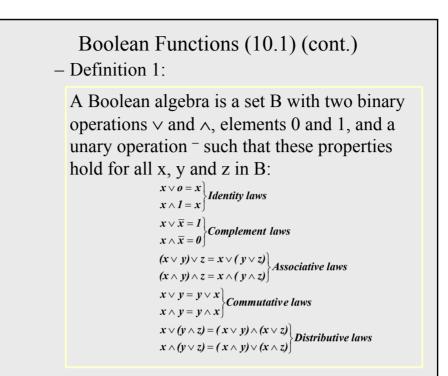
F(x,y,z) = xy + z	\overline{z}	ху	Z	У	X
1	0	1	1	1	1
1	1	1	0	1	1
0	0	0	1	0	1
1	1	0	0	0	1
0	0	0	1	1	0
1	1	0	0	1	0
0	0	0	1	0	0
1	1	0	0	0	0

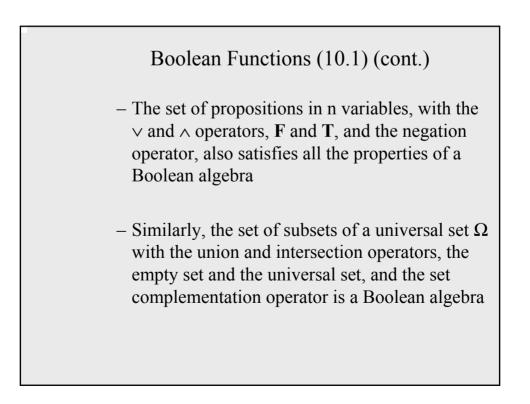
Identity		Name		
$\overline{x} = x$		Law of the double component		
$\mathbf{x} + \mathbf{x} = \mathbf{x}$	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	Idempotent laws		
$\mathbf{x} + 0 = \mathbf{x}$	x . 1 = x	Identity laws		
x + 1 = 1	$x \cdot 0 = 0$	Domination laws		
$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	xy = yx	Commutative laws		
x + (y + z) = (x $x(yz) = (xy)z$	(x + y) + z	Associative laws		
$\mathbf{x} + \mathbf{y}\mathbf{z} = (\mathbf{x} + \mathbf{y})$	(x+z)	Distributive laws		
$\overline{(xy)} = \overline{x} + \overline{y}$	$\overline{(x+y)}=\overline{x}\ \overline{y}$	De Morgan's laws		
x + xy = x	$\mathbf{x}(\mathbf{x} + \mathbf{y}) = \mathbf{x}$	Absorption laws		
$x + \overline{x} = $	1	Unit property		
$x\overline{x} = \theta$		Zero property		

Boolean Functions (10.1) (cont.) – Example: Show that the distributive law x(y + z) = xy + xz <i>Solution:</i>											
X	y	z	y + z	XV	XZ	x(y+z)	xy + xz				
1	1	1	1	1	1	1	1				
1	1	0	1	1	0	1	1				
1	0	1	1	0	1	1	1				
1	0	0	0	0	0	0	0				
0	1	1	1	0	0	0	0				
0	1	0	1	0	0	0	0				
0	0	1	1	0	0	0	0				
0	0	0	0	0	0	0	0				

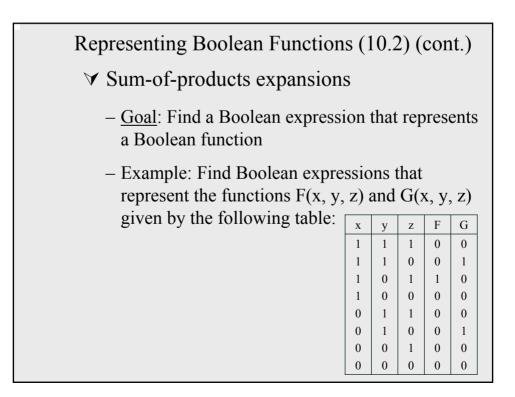


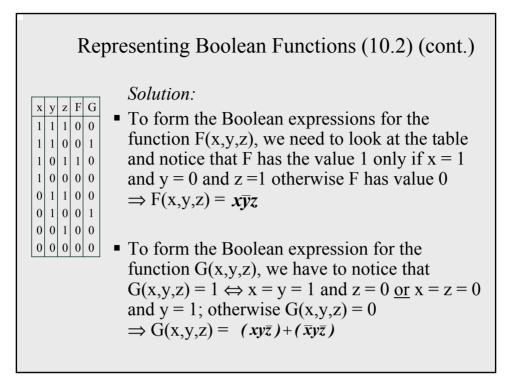


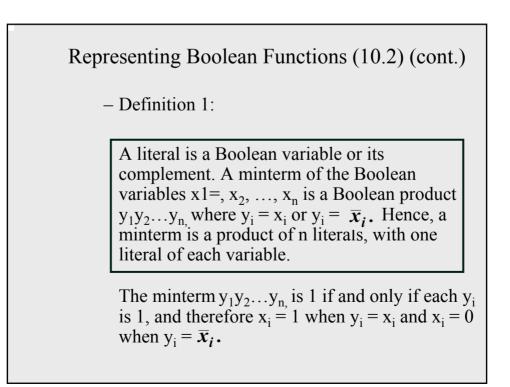




Representing Boolean Functions (10.2)
Two problems of Boolean algebra are emphasized in this section
Given the values of a Boolean function, how can a Boolean expression that represents this function be found?
Is there a smaller set of operators that can be used to represent all Boolean functions?







Representing Boolean Functions (10.2) (cont.)

- Example: Find a minterm that equals 1 if $x_1 = x_3 = 0$ and $x_2 = x_4 = x_5 = 1$, and equals 0 otherwise

Solution: The minterm is: $\overline{x}_1 x_2 \overline{x}_3 x_4 x_5$

 Minterms are used to determine the Boolean expression of a Boolean function in a table

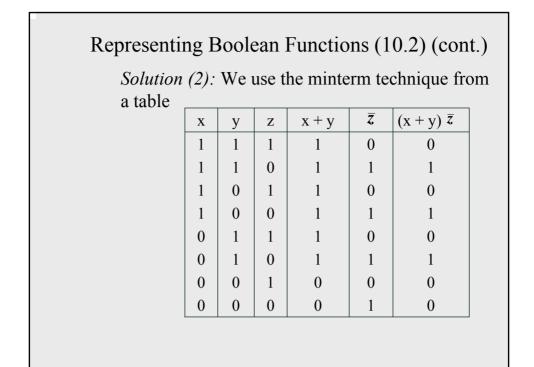
Representing Boolean Functions (10.2) (cont.)

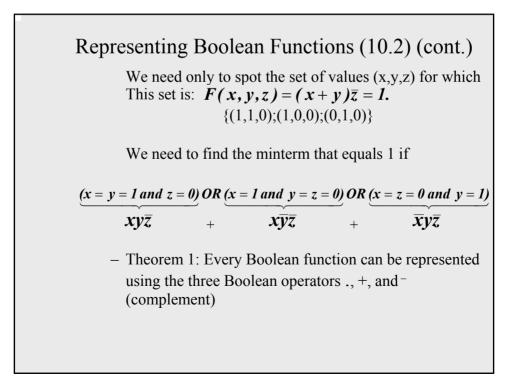
- Example: Find the sum-of-products expansion for the function $F(x, y, z) = (x + y)\overline{z}$

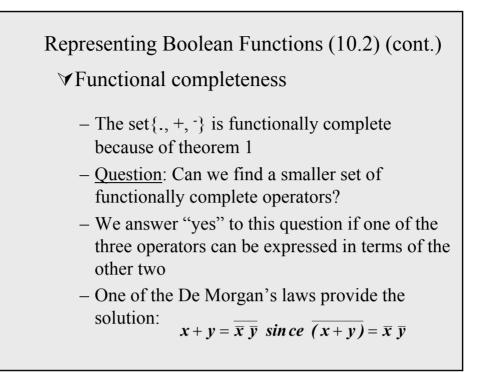
```
Solution (1):
```

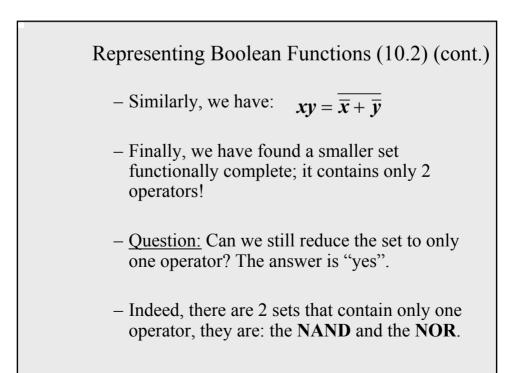
$$(x + y)\overline{z} = x\overline{z} + y\overline{z} = x1\overline{z} + 1y\overline{z}$$
$$= x(y + \overline{y})\overline{z} + (x + \overline{x})y\overline{z}$$
$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$
$$= xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z} \quad (since \ u + u = u)$$

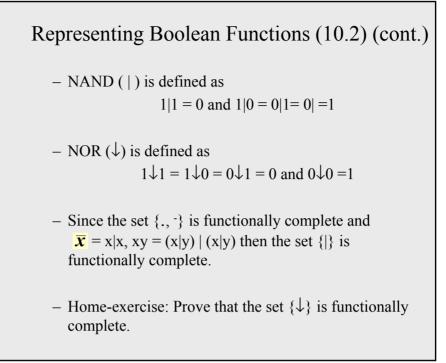
Ch.10 (Part 1) [Sections 10.1, 10.2, 10.3]: Boolean Algebra &

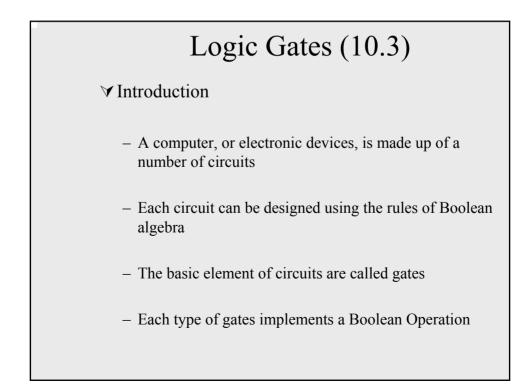






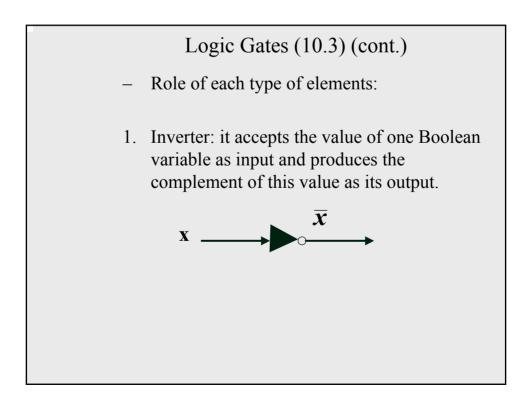


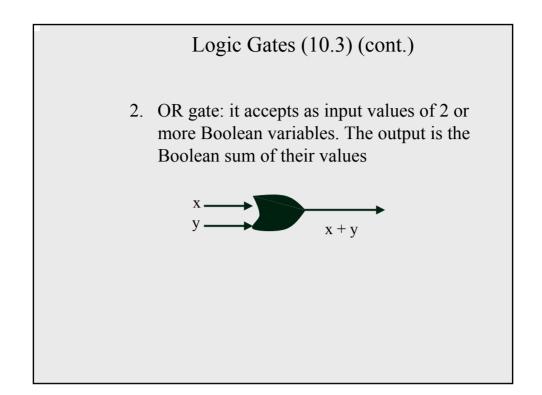


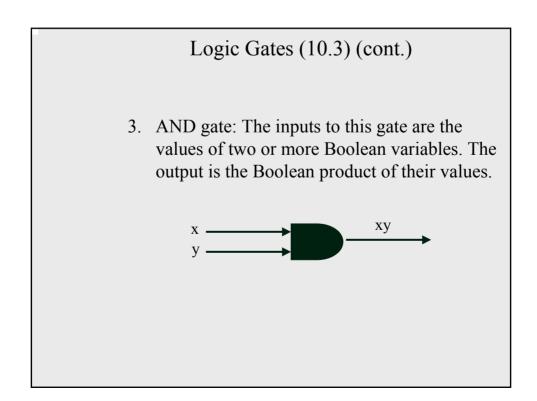


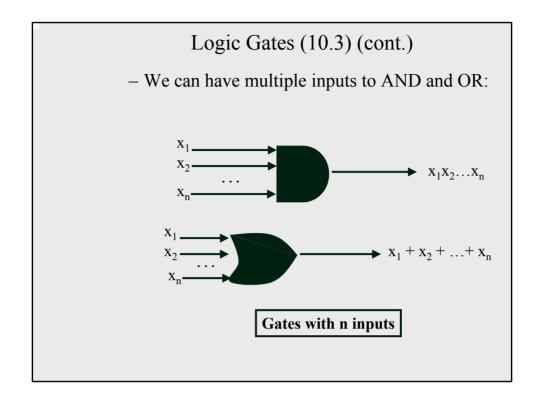
Logic Gates (10.3) (cont.)

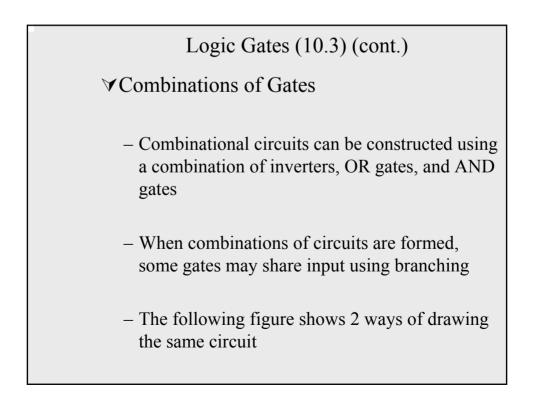
- All circuits studied in this chapter provides output that depends only on the input, and not on the current state of the circuit
- These circuits that have no memory capabilities are called combinational circuits or gating networks
- Combinatorial circuits are built using 3 types of elements: (1) inverter, (2) OR gate, and (3) AND gate

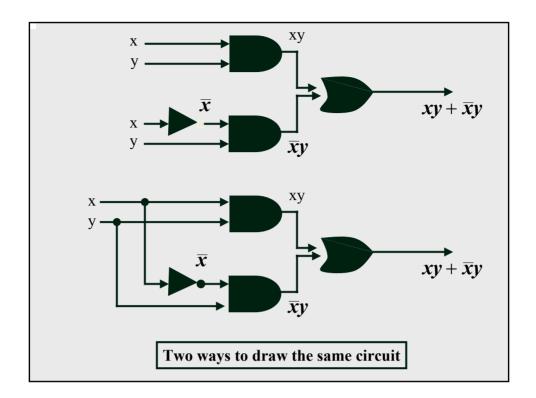


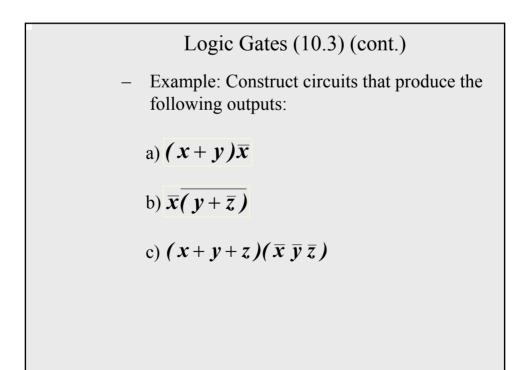


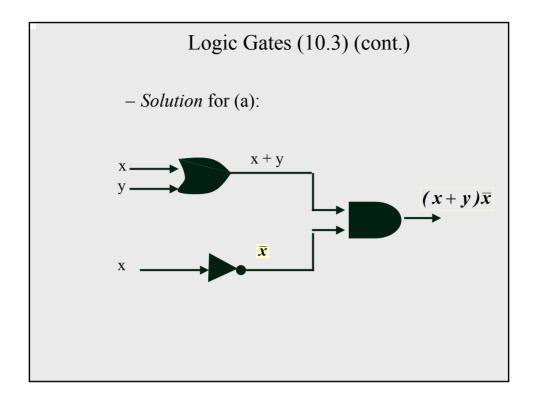


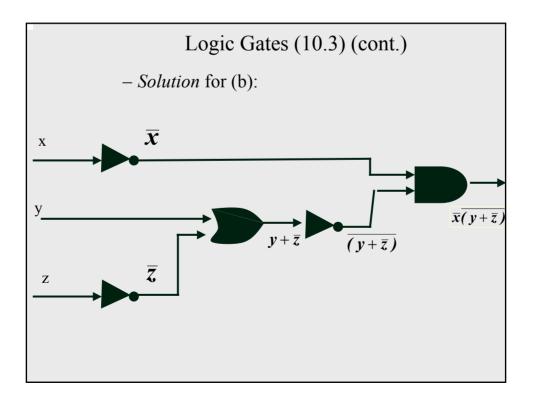












Ch.10 (Part 1) [Sections 10.1, 10.2, 10.3]: Boolean Algebra &

