
Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 1

Chapter 8: Abstract Data Types

Development and Implementation

Our Goal

Well-defined representations that allow objects to be
created and used in an intuitive manner

User should not have to bother with unnecessary details

Example

Programming a microwave to make popcorn should not require
a physics course

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 2

Golden Rule

Use information hiding and encapsulation to support
integrity of data

Put implementation details in a separate module

! Implementation details complicate the class declarations

Data members are private so that use of the interface is
required

!Makes clients generally immune to implementation changes

Another Golden Rule

Keep it simple – class minimality rule

Implement a behavior as a nonmember function when possible

Only add a behavior if it is necessary

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 3

Abstract Data Type

Well-defined and complete data abstraction using the
information-hiding principle

Rational Number Review
Rational number

Ratio of two integers: a/b
!Numerator over the denominator

Standard operations
Addition Multiplication

Subtraction Division

bc+ad=c+a ac=c*a

a - c = ad - bc ad
=

c
/

a

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 4

Abstract Data Type
Consider
Rational a(1,2); // a = 1/2
Rational b(2,3); // b = 2/3
cout << a << " + " << b << " = " << a + b;
Rational s; // s = 0/1
Rational t; // t = 0/1
cin >> s >> t;
cout << s << " * " << t << " = " << s * t;

Observation
Natural look that is analogous to fundamental-type arithmetic
objects

Rational Attributes

A numerator and denominator

Implies in part a class representation with two private int
members

!NumeratorValue and DenominatorValue

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 5

Rational Public Behaviors

Rational arithmetic

Addition, subtraction, multiplication, and division

Rational relational

Equality and less than comparisons

!Practice rule of class minimality

Rational Public Behaviors
Construction

Default construction
!Design decision 0/1

Specific construction
!Allow client to specify numerator and denominator

Copy construction
!Provided automatically

Assignment
Provided automatically

Insertion and extraction

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 6

Non-Public Behaviors

Inspection and mutation of data members

Clients deal with a Rational object!

Auxiliary Behaviors

Operations (necessarily public)

Arithmetic, relational, insertion, and extraction operations

!Provides the natural form we expect

• Class definition provides a functional form that auxiliary operators use

!Provides commutativity consistency

• For C++ reasons 1 + r and r + 1 would not be treated the same if
addition was a member operation

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 7

Object a
Attributes:

NumeratorValue(1)
DenominatorValue(2)

Object b
Attributes:

NumeratorValue(2)
DenominatorValue(3)

Class Rational
Public interface: Add(), Subtract(),

Multiply(),Divide(), Equal(),
LessThan(), Insert(),Extract()
Data members: NumeratorValue,

DenominatorValue
Other members: GetNumerator(), GetDenominator(),

SetNumerator(), SetDenominator(),

Instantiation
Rational a(1,2);

Instantiation
Rational b(2,3);

Library Components

Rational.h
Class definitions and library function prototypes

Rational.cpp
Implementation source code – member and auxiliary function
definitions
!Auxiliary functions are assisting global functions that provide expected

but non-member capabilities

Rational.obj
Translated version of Rational.cpp (linkable)

Rational.lib
Library version of Rational.obj that is more readily linkable

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 8

#include <iostream>
using namespace std;
#include "rational.h"
int main() {
Rational r;
Rational s;
cout << "Enter two rationals(a/b): ";
cin >> r >> s;
Rational Sum = r + s;
cout << r << " + " << s << " = " <<
Sum;
return 0;

}

MyProgram.cpp
Making use of the Rational
class. The header file provides
access to the class definition
and to auxiliary function
prototypes. The header file
does not provide member and
auxiliary definitions

Producing MyProgram.exe
Preprocessor combines the definitions and prototypes in iostream
and rational headers along with MyProgram.cpp to produce a
compilation unit

Compiler must be told where to look for Rational.h

Compiler translates the unit and produces MyProgram.obj

Compiler recognizes that MyProgram.obj does not contain actual
definitions of Rational constructor, +, >>, and <<

Linker is used to combine definitions from the Rational library file
with MyProgram.obj to produce MyProgram.exe

Compiler must be told where to find the Rational library file

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 9

Producing MyProgram.exe

Process
preprocessor
directives to
produce a
translation

unit

MyProgram.exe

MyProgram.cpp

Check
translation unit
for legal syntax
and compile it
into object file

MyProgram.obj

Link object file
with standard

library files
and rational
library file to

produce
executable

unit

Rational Header File Overview
File layout

Class definition and library prototypes nested within preprocessor
statements

! Ensures one inclusion per translation unit

Class definition precedes library prototypes

#ifndef RATIONAL_H
#define RATIONAL_H
class Rational {

// …
} ;

// library prototypes …
#endif

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 10

Class Rational Overview
class Rational { // from rational.h
public:

// for everybody including clients
protected:

// for Rational member functions and for
// member functions from classes derived
// from rational

private:
// for Rational member functions

} ;

Rational Public Section
public:
// default constructor
Rational();
// specific constructor
Rational(int numer, int denom = 1);
// arithmetic facilitators
Rational Add(const Rational &r) const;
Rational Multiply(const Rational &r) const;
// stream facilitators
void Insert(ostream &sout) const;
void Extract(istream &sin);

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 11

Rational Protected Section
protected:
// inspectors
int GetNumerator() const;
int GetDenominator() const;
// mutators
void SetNumerator(int numer);
void SetDenominator(int denom);

Rational Private Section
private:
// data members
int NumeratorValue;
int DenominatorValue;

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 12

// after the class definition in rational.h

Rational operator+(
const Rational &r, const Rational &s);

Rational operator*(
const Rational &r, const Rational &s);

ostream& operator<<(
ostream &sout, const Rational &s);

istream& operator>>(istream &sin, Rational
&r);

Auxiliary Operator Prototypes

Auxiliary Operator Importance
Rational r;
Rational s;
r.Extract(cin);
s.Extract(cin);
Rational t =
r.Add(s);

t.Insert(cout);

Rational r;
Rational s;
cin >> r;
cin >> s;
Rational t = r +
s;

cout << t;

Natural look

Should << be a member?
Consider
r << cout;

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 13

Const Power
const Rational OneHalf(1,2);
cout << OneHalf; // legal
cin >> OneHalf; //
illegal

Rational Implementation
#include <iostream> // Start of
rational.cpp

#include <string>
using namespace std;
#include "rational.h"

// default constructor
Rational::Rational() {
SetNumerator(0);
SetDenominator(1);

}

Example
Rational r; // r = 0/1

Which objects are
being referenced?

Is this necessary?

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 14

Remember

Every class object

Has its own data members

Has its own member functions

!When a member function accesses a data member

• By default the function accesses the data member of the object to which it
belongs!

– No special notation needed

Remember

Auxiliary functions

Are not class members

To access a public member of an object, an auxiliary function
must use the dot operator on the desired object

object.member

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 15

Specific Constructor
// (numer, denom) constructor
Rational::Rational(int numer, int denom) {
SetNumerator(numer);
SetDenominator(denom);

}

Example
Rational t(2,3); // t = 2/3

Rational u(2); // u = 2/1 (why?)

Inspectors
int Rational::GetNumerator() const {
return NumeratorValue;

}

int Rational::GetDenominator() const {
return DenominatorValue;

}

Where are the following legal?
int a = GetNumerator();
int b = t.GetNumerator();

Which object is
being referenced?

Why the const?

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 16

Numerator Mutator
void Rational::SetNumerator(int numer) {
NumeratorValue = numer;

}

Where are the following legal?

SetNumerator(1);

t.SetNumerator(2);

Why no const?

Denominator Mutator
void Rational::SetDenominator(int denom)
{
if (denom != 0) {

DenominatorValue = denom;
}
else {

cerr << "Illegal denominator: " <<
denom

<< "using 1" << endl;
DenominatorValue = 1;

}
}

Example
SetDenominator(5);

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 17

Addition Facilitator
Rational Rational::Add(const Rational &r)
const {
int a = GetNumerator();
int b = GetDenominator();
int c = r.GetNumerator();
int d = r.GetDenominator();
return Rational(a*d + b*c, b*d);

}

Example
cout << t.Add(u);

Multiplication Facilitator
Rational Rational::Multiply(const Rational
&r)
const {
int a = GetNumerator();
int b = GetDenominator();
int c = r.GetNumerator();
int d = r.GetDenominator();
return Rational(a*c, b*d);

}

Example
t.Multiply(u);

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 18

Insertion Facilitator

void Rational::Insert(ostream &sout) const
{
sout << GetNumerator() << '/' <<
GetDenominator();
return;

}

Example
t.Insert(cout);

Why is sout a reference parameter?

Basic Extraction Facilitator
void Rational::Extract(istream &sin) {
int numer;
int denom;
char slash;
sin >> numer >> slash >> denom;
assert(slash == '/');
SetNumerator(numer);
SetDenominator(denom);
return;

}

Example
t.Extract(cin);

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 19

Auxiliary Arithmetic Operators
Rational operator+(
const Rational &r, const Rational &s) {
return r.Add(s);

}

Rational operator*(
const Rational &r, const Rational &s) {
return r.Multiply(s);

}

Example
cout << (t + t) * t;

Auxiliary Insertion Operator
ostream& operator<<(
ostream &sout, const Rational &r) {
r.Insert(sout);
return sout;

}

Why a reference return?

Note we can do either

t.Insert(cout); cout << endl; //
unnatural

cout << t << endl; // natural

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 20

Auxiliary Extraction Operator
// extracting a Rational
istream& operator>>(istream &sin, Rational
&r) {
r.Extract(sin);
return sin;

}

Why a reference return?

We can do either

t.Extract(cin); // unnatural
cin >> t; // natural

What’s Happening Here?
Suppose the following definitions are in effect

Rational a(2,3);
Rational b(3,4);
Rational c(1,2);

Why do the following statements work

Rational s(a);
Rational t = b;
c = a

C++ has automatically provided us a copy constructor
and an assignment operator

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 21

Copy Construction
Default copy construction

Copy of one object to another in a bit-wise manner

! The representation of the source is copied to the target in a bit-by-bit
manner

This type of copy is called shallow copying

Class developers are free to implement their own copy
constructor

Rational does need a special one, but we will define one
for the experience

A Rational Copy Constructor
Rational::Rational(const Rational &r) {

int a = r.GetNumerator();
int b = r.GetDenomiator();

SetNumerator(a);
SetDenominator(b);

}

Rational s(a);
Rational t = b;

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 22

Gang Of Three
If it is appropriate to define a copy constructor then

Consider also defining

!Assignment operator
• Copy source to target and return target

– A = B = C

!Destructor
• Clean up the object when it goes out of scope

We give the name Gang of three to the

Copy constructor, assignment operator, and the destructor

A Rational Assignment Operator
Rational& Rational::operator =(const
Rational &r) {
int a = r.GetNumerator();
int b = r.GetDenomiator();

SetNumerator(a);
SetDenominator(b);

return *this;

}

a = b;
a = b = c;

*this is C++ syntax for the
object whose member
function was invoked

Dr. Djamel Bouchaffra CSE 501 Programming & Data Structure

Ch8: Implementing Abstract Data Types 23

Rational Destructor

Rational::~Rational() {
// nothing to do

}

	Chapter 8: Abstract Data Types
	Our Goal
	Golden Rule
	Another Golden Rule
	Abstract Data Type
	Rational Number Review
	Abstract Data Type
	Rational Attributes
	Rational Public Behaviors
	Rational Public Behaviors
	Non-Public Behaviors
	Auxiliary Behaviors
	Library Components
	MyProgram.cpp
	Producing MyProgram.exe
	Producing MyProgram.exe
	Rational Header File Overview
	Class Rational Overview
	Rational Public Section
	Rational Protected Section
	Rational Private Section
	Auxiliary Operator Prototypes
	Auxiliary Operator Importance
	Const Power
	Rational Implementation
	Remember
	Remember
	Specific Constructor
	Inspectors
	Numerator Mutator
	Denominator Mutator
	Addition Facilitator
	Multiplication Facilitator
	Insertion Facilitator
	Basic Extraction Facilitator
	Auxiliary Arithmetic Operators
	Auxiliary Insertion Operator
	Auxiliary Extraction Operator
	What’s Happening Here?
	Copy Construction
	A Rational Copy Constructor
	Gang Of Three
	A Rational Assignment Operator
	Rational Destructor

