
Chapter4 part2:
Iterative Constructs

Mechanisms for deciding under
what conditions an action should

be repeated

Averaging

Determining Average Magnitude

• Suppose we want to calculate the average apparent
brightness of a list of five star magnitude values

• Can we do it?

• Yes, it would be easy

• Suppose we want to calculate the average apparent
brightness of a list of 8,479 stars visible from earth

• Can we do it

• Yes, but it would be gruesome without the use of iteration

C++ Iterative Constructs

• Three constructs

• while statement

• for statement

• do-while statement

While Syntax

Action to be iteratively
performed until logical

expression is false

Logical expression that determines
whether the action is to be executed

while Expression Action()

While Semantics
Expression is

evaluated at the
start of each

iteration of the
loop

Expression

Action

true

If Expression is
true, Action is

executed
false

If Expression is
false, program

execution
continues with

next statement

Computing an Average
int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

listSize 4

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

0

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
0

0

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
0

0

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
0

value
0

--

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
0

value
0

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
0

value
01

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
01

value
1

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
1

value
1

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
1

value
1

--

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
1

value
1

5

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
1

value
16

5

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
12

value
6

5

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
2

value
6

5

6

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
2

value
6

2

--

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
2

value
6

2

3

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
2

value
69

3

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
23

value
9

3

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
3

value
9

3

3

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
3

value
9

3

--

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
3

value
9

3

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
3

value
9

1

10

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
34

value
10

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
34

value
10

1

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
34

10

average 2.5

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

numberProcessed
listSize 4

sum
34

average
10

2.5

Execution Trace Suppose input contains: 1 5 3 1 6

int listSize = 4;
int numberProcessed = 0;
double sum = 0;
while (numberProcessed < listSize) {

double value;
cin >> value;
sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

Stays in stream until
extracted

Power of Two Table
const int TableSize = 20;

int i = 0;
long Entry = 1;

cout << "i" << "\t\t" << "2 ** i" << endl;

while (i < TableSize) {
cout << i << "\t\t" << Entry << endl;
Entry = 2 * Entry;
++i;

}

Better Way of Averaging

int numberProcessed = 0;
double sum = 0;
double value;
while (cin >> value) {

sum += value;
++numberProcessed;

}
double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

What if list is
empty?

The value of the input
operation corresponds to
true only if a successful

extraction was made

Even Better Way of Averaging
int numberProcessed = 0;
double sum = 0;
double value;
while (cin >> value) {

sum += value;
++numberProcessed;

}
if (numberProcessed > 0) {

double average = sum / numberProcessed ;
cout << "Average: " << average << endl;

}
else {

cout << "No list to average" << endl;
}

The For Statement
• Syntax

for (ForInit ; ForExpression;
PostExpression)

Action

• Example

for (int i = 0; i < 3; ++i) {
cout << "i is " << i << endl;

}

ForExpr

Action

true false

ForInit

PostExpr

Evaluated once
at the beginning

of the for
statements's

execution The ForExpr is
evaluated at the
start of each

iteration of the
loop

If ForExpr is
true, Action is

executed

After the Action
has completed,

the
PostExpression

is evaluated

If ForExpr is
false, program

execution
continues with
next statement

After evaluating the
PostExpression, the next

iteration of the loop starts

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i 0

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i 0

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0

i 0

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0

i 0

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0

i 1

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i 1

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1

i 1

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1

i 1

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1

i 2

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1

i 2

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1
i is 2

i 2

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1
i is 2

i 2

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1
i is 2

i 3

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1
i is 2

i 3

Execution Trace
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;
}
cout << "all done" << endl;

i is 0
i is 1
i is 2
all done

i 3

Table Revisiting
const int TableSize = 20;

long Entry = 1;

cout << "i" << "\t\t" << "2**i" << endl;

for (int i = 0; i <= TableSize; ++i) {
cout << i << "\t\t" << Entry << endl;
Entry *= 2;

}

Table Revisiting
const int TableSize = 20;

long Entry = 1;

cout << "i" << "\t\t" << "2**i" << endl;

for (int i = 0; i < TableSize; ++i) {
cout << i << "\t\t" << Entry << endl;
Entry = 2 * Entry;

}

cout << "i is" << i << endl; // illegal

The scope of i is limited
to the loop!

Displaying a Diagonal

SimpleWindow W("One diagonal", 5.5, 2.25);
W.Open();
for (int j = 1; j <= 3; ++j) {

float x = j * 0.75 + 0.25;
float y = j * 0.75 - 0.25;
float Side = 0.4;
RectangleShape S(W, x, y, Blue, Side, Side);
S.Draw();

}

Sample Display

Displaying Three Diagonals

SimpleWindow W("Three diagonals", 6.5, 2.25);
W.Open();
for (int i = 1; i <= 3; ++i) {

for (int j = 1; j <= 3; ++j) {
float x = i - 1 + j * 0.75 + 0.25;
float y = j * 0.75 - 0.25;
float Side = 0.4;
RectangleShape S(W, x, y, Blue, Side, Side);
S.Draw();

}
} The scope of i includes the inner loop.

The scope of j is just the inner loop.

Sample Display

int Counter1 = 0;
int Counter2 = 0;
int Counter3 = 0;
int Counter4 = 0;
int Counter5 = 0;

++Counter1;

for (int i = 1; i <= 10; ++i) {

++Counter2;

for (int j = 1; j <= 20; ++j) {
++Counter3;

}

++Counter4;
}

++Counter5;

cout << Counter1 << " " << Counter2 << " "

<< Counter3 << " " << Counter4 << " "

<< Counter5 << endl;

For Into While

• Observation

• The for statement is equivalent to

{
ForInit;
while (ForExpression) {

Action;
PostExpression;

}
}

Counting Characters
int NumberOfNonBlanks = 0;
int NumberOfUpperCase = 0;
char c;
while (cin >> c) {

++NumberOfNonBlanks;
if ((c >= 'A') && (c <= 'Z')) {

++NumberOfUpperCase;
}

}
cout << "Nonblank characters: " << NumberOfNonBlanks

<< endl << "Uppercase characters: "
<< NumberOfUpperCase << endl;

Only extracts nonblank
characters

Counting All Characters
char c;
int NumberOfCharacters = 0;
int NumberOfLines = 0;
while (cin.get(c)) {

++NumberOfCharacters;
if (c == '\n') {

++NumberOfLines
}

}
cout << "Characters: " << NumberOfCharacters

<< endl << "Lines: " << NumberOfLines
<< endl;

Extracts all
characters

#include <iostream>
#include <fstream>
using namespace std;
int main() {

ifstream fin("mydata.txt");
int ValuesProcessed = 0;
float ValueSum = 0;
float Value;
while (fin >> Value) {

ValueSum += Value;
++ValuesProcessed;

}
if (ValuesProcessed > 0) {

ofstream fout("average.txt");
float Average = ValueSum / ValuesProcessed;
fout << "Average: " << Average << endl;
return 0;

}
else {

cerr << "No list to average" << endl;
return 1;

}
}

File Processing

Iteration Do’s

• Key Points

• Make sure there is a statement that will eventually
terminate the iteration criterion

• The loop must stop!

• Make sure that initialization of loop counters or iterators is
properly performed

• Have a clear purpose for the loop
• Document the purpose of the loop
• Document how the body of the loop advances the purpose of the

loop

The Do-While Statement

• Syntax
do Action

while (Expression)

• Semantics
• Execute Action
• If Expression is true then

execute Action again
• Repeat this process until

Expression evaluates to false

• Action is either a single
statement or a group of
statements within braces

Action

true

false

Expression

Waiting for a Proper Reply
char Reply;
do {

cout << "Decision (y, n): ";
if (cin >> Reply)

Reply = tolower(Reply);
else

Reply = 'n';
} while ((Reply != 'y') && (Reply != 'n'));

	Chapter4 part2:Iterative Constructs
	Averaging
	Determining Average Magnitude
	C++ Iterative Constructs
	While Syntax
	While Semantics
	Computing an Average
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Power of Two Table
	Better Way of Averaging
	Even Better Way of Averaging
	The For Statement
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Execution Trace
	Table Revisiting
	Table Revisiting
	Displaying a Diagonal
	Sample Display
	Displaying Three Diagonals
	Sample Display
	For Into While
	Counting Characters
	Counting All Characters
	File Processing
	Iteration Do’s
	The Do-While Statement
	Waiting for a Proper Reply

