
Chapter 11:
Pointers and Dynamic Objects

!Mechanisms for developing flexible list
representations

Categorizing Expressions
! Lvalue expressions

!Represent objects that can be evaluated and
modified

! Rvalue expressions
!Represent objects that can only be evaluated

! Consider
int a;
vector<int> b(3);
int c[3];
a = 1; // a: lvalue
c[0] = 2*a + b[0];// c[0], a, b[0]: lvalues

! Observation
!Not all lvalues are the names of objects

Basics
!Pointer

!Object whose value represents the location of
another object

!In C++ there are pointer types for each type of
object
!Pointers to int objects
!Pointers to char objects
!Pointers to RectangleShape objects

!Even pointers to pointers
!Pointers to pointers to int objects

Indicates to take the address
of the object

Syntax
! Examples of uninitialized pointers

int *iPtr; // iPtr is a pointer to
// an int

char *s; // s is a pointer to a
// char

Rational *rPtr; // rPtr is a pointer
//to a Rational

! Examples of initialized pointers
int i = 1;
char c = 'y';
int *ptr = &i; // ptr is a pointer to

//int i
char *t = &c; // t is a pointer to a

//char c

Indicates pointer object

Indirection Operator
! An asterisk has two uses with regard to pointers

!In a definition, it indicates that the object is a pointer

char *s; // s is of type pointer to char

!In expressions, when applied to a pointer it evaluates
to the object to which the pointer points

int i = 1;
int *ptr = &i; // ptr points to i
*ptr = 2;
cout << i << endl; // display a 2

* indicates indirection or dereferencing

*ptr is an lvalue

Address Operator
! & use is not limited to definition initialization

int i = 1;
int j = 2;
int *ptr;
ptr = &i; // ptr points to
location of i

*ptr = 3; // contents of i are
//updated

ptr = &j; // ptr points to
//location of j

*ptr = 4; // contents of j are
//updated

cout << i << " " << j << endl;

Null Address
!0 is a pointer constant that represents the

empty or null address

!Its value indicates that pointer is not
pointing to a valid object

!Cannot dereference a pointer whose value
is null

int *ptr = 0;
cout << *ptr << endl; // invalid,
//ptr does not point to a valid int

Member Indirection
! Consider

Rational r(4,3);
Rational rPtr = &r;

! To select a member of r using rPtr and member
selection, operator precedence requires

(*rPtr).Insert(cout);

! This syntax is clumsy, so C++ provides the indirect
member selector operator ->

rPtr->Insert(cout);

Invokes member Insert()
of the object to which
rPtr points (r)

Invokes member Insert() of the
object to which rPtr points (r)

Traditional Pointer Usage
void IndirectSwap(char *Ptr1, char *Ptr2) {

char c = *Ptr1;
*Ptr1 = *Ptr2;
*Ptr2 = c;

}

int main() {
char a = 'y';
char b = 'n';
IndirectSwap(&a, &b);
cout << a << b << endl;
return 0;

}

In C, there are no reference
parameters. Pointers are used to
simulate them.

Constants and Pointers
! A constant pointer is a pointer such that we cannot change the

location to which the pointer points

char c = 'c';
const char d = 'd';
char * const ptr1 = &c;
ptr1 = &d; // illegal

! A pointer to a constant value is a pointer object such that the
value at the location to which the pointer points is considered
constant

const char *ptr2 = &d;
*ptr2 = 'e'; // illegal: cannot change d

// through indirection with ptr2

" Οβϕεχτ µεµορψ ισ αχθυιρεδ
αυτοµατιχαλλψ

" Οβϕεχτ µεµορψ ισ ρετυρνεδ
αυτοµατιχαλλψ ωηεν οβϕεχτ
γοεσ ουτ οφ σχοπε

" Οβϕεχτ µεµορψ ισ αχθυιρεδ
βψ προγραµ ωιτη αν
αλλοχατιον ρεθυεστ

νεω οπερατιον

" ∆ψναµιχ οβϕεχτσ χαν εξιστ
βεψονδ τηε φυνχτιον ιν ωηιχη
τηεψ ωερε αλλοχατεδ

" Οβϕεχτ µεµορψ ισ ρετυρνεδ
βψ α δεαλλοχατιον ρεθυεστ

δελετε οπερατιον

Differences
!Local objects and

parameters
!Dynamic object

General New Operation Behavior
! Memory for dynamic objects

!Requested from the free store
!Free store is memory controlled by operating system

! Operation specifies
!The type and number of objects

! If there is sufficient memory to satisfy the request
!A pointer to sufficient memory is returned by the

operation

! If there is insufficient memory to satisfy the request
!An exception is generated

!An exception is an error state/condition which if not
handled (corrected) causes the program to terminate

The Basic New Form
!Syntax

Ptr = new SomeType ;

!Where
! Ptr is a pointer of type SomeType

!Beware
!The newly acquired memory is uninitialized

unless there is a default SomeType
constructor

Examples
int *iptr = new int;
Rational *rptr = new Rational;

—iptr

Uninitialized int object

0/1rptr

Rational object with default
initialization

Another Basic New Form
! Syntax

SomeType *Ptr = new
SomeType(ParameterList);

!Where
!Ptr is a pointer of type SomeType

! Initialization

!The newly acquired memory is initialized using a
SomeType constructor

!ParameterList provides the parameters to the
constructor

Examples
int *iptr = new int(10);
Rational *rptr = new
Rational(1,2);

10ip

1/2rptr

The Primary New Form
! Syntax

P = new SomeType [Expression] ;

!Where
!P is a pointer of type SomeType
!Expression is the number of contiguous objects of type

SomeType to be constructed -- we are making a list

!Note
!The newly acquired list is initialized if there is a default

SomeType constructor

! Because of flexible pointer syntax
! P can be considered to be an array

Examples
int *A = new int [3];
Rational *R = new Rational[2];
A[1] = 5;
Rational r(2/3);
R[0] = r;

—A

2/3R

5

0/1

—

Right Array For The Job
cout << "Enter list size: ";
int n;
cin >> n;
int *A = new int[n];
GetList(A, n);
SelectionSort(A, n);
DisplayList(A, n);

! Note

!Use of the container classes of the STL is
preferred from a software engineering viewpoint
!Example vector class

Delete Operators
!Forms of request

delete P; // used if storage came
from new

delete [] P; // used if storage came
from new[]

!Storage pointed to by P is returned to free
store

! P is now undefined

Cleaning Up
int n;
cout << "Enter list size: ";
cin >> n;
int *A = new int[n];
GetList(A, n);
SelectionSort(A, n);
DisplayList(A, n);
delete [] A;

Dangling Pointer Pitfall
int *A = new int[5];
for (int i = 0; i < 5; ++i)
A[i] = i;

int *B = A;

delete [] A;

A
B

0 1 2 3 4

A
B

Locations do not belong to program

—

?

Memory Leak Pitfall
int *A = new int [5];
for (int i = 0; i < 5; ++i)
A[i] = i;

A = new int [5];

A 0 1 2 3 4
— — — — —

These locations cannot be
accessed by program

A 0 1 2 3 4

A Simple Dynamic List Type
! What we want

!An integer list data type IntList with the basic
features of the vector data type from the Standard
Template Library

! Features and abilities

!True object
!Can be passed by value and reference
!Can be assigned and copied

!Inspect and mutate individual elements
!Inspect list size
!Resize list
!Insert and extract a list

Sample IntList Usage
IntList A(5, 1);
IntList B(10, 2);
IntList C(5, 4);
for (int i = 0, i < A.size(); ++i) {
A[i] = C[i];

}
cout << A << endl; // [4 4 4 4 4]
A = B;
A[1] = 5;
cout << A << endl; // [5 2 2 2 2 2 2 2
2 2]

IntList Definition
class IntList {
public:

// constructors
IntList(int n = 10, int val = 0);
IntList(const int A[], int n);
IntList(const IntList &A);
// destructor
~IntList();
// inspector for size of the list
int size() const;
// assignment operator
IntList & operator=(const IntList &A);

IntList Definition (continued)

public:
// inspector for element of constant

list
const int& operator[](int i) const;
// inspector/mutator for element of
// nonconstant list
int& operator[](int i);
// resize list
void resize(int n = 0, int val = 0);
// convenience for adding new last

element
void push_back(int val);

IntList Definition (continued)

private:
// data members
int *Values; // pointer to elements
int NumberValues; // size of list

};

// IntList auxiliary operators -- nonmembers
ostream& operator<<(ostream &sout, const IntList &A);

istream& operator>>(istream &sin, IntList &A);

Default Constructor
IntList::IntList(int n, int val)
{
assert(n > 0);
NumberValues = n;
Values = new int [n];
assert(Values);
for (int i = 0; i < n; ++i) {

Values[i] = val;
}

}

Gang of Three Rule
! If a class has a data member that points to dynamic

memory then that class normally needs a class-defined

!Copy constructor
!Constructor that builds an object out of an object of the

same type

!Member assignment operator
!Resets an object using another object of the same type as a

basis

!Destructor
!Anti-constructor that typically uses delete the operator on

the data members that point to dynamic memory

Why A Tailored Copy Constructor

! Suppose we use the default copy constructor
IntList A(3, 1);
IntList B(A);

! And then
A[2] = 2;

! Then
! B[2] is changed!
!Not what a client would expect

! Implication
!Must use tailored copy constructor

A
B

1 2 1
3

3

Tailored Copy Constructor
IntList::IntList(const IntList
&A) {
NumberValues = A.size();
Values = new int [size()];
assert(Values);
for (int i = 0; i < size(); ++i)

Values[i] = A[i];
}

What kind of subscripting is being
performed?

Gang Of Three
! What happens when an IntList goes out of scope?

!If there is nothing planned, then we would have a
memory leak

! Need to have the dynamic memory automatically deleted
!Define a destructor

!A class object going out of scope automatically has its
destructor invoked

IntList::~IntList() {
delete [] Values;

}

Notice the tilde

First Assignment Attempt
!Algorithm

!Return existing dynamic memory

!Acquire sufficient new dynamic memory

!Copy the size and the elements of the
source object to the target element

Initial Implementation (Wrong)
IntList& operator=(const IntList &A) {
NumberValues = A.size();
delete [] Values;
Values = new int [NumberValues];
assert(Values);
for (int i = 0; i < A.size(); ++i)

Values[i] = A[i];
return A;

}

! Consider what happens with the code segment

IntList C(5,1);
C = C;

This Pointer
! Consider

!this

! Inside a member function or member operator this is a
pointer to the invoking object

IntList::size() {
return NumberValues;

}

or equivalently

IntList::size() {
return this->NumberValues;

}

Member Assignment Operator
IntList& IntList::operator=(const
IntList &A) {
if (this != &A) {

delete [] Values;
NumberValues = A.size();
Values = new int [A.size()];
assert(Values);
for (int i = 0; i < A.size(); ++i)

{
Values[i] = A[i];

}
}
return *this;

}

Notice the different uses of
the subscript operator

Why the asterisk?

Accessing List Elements
// Compute an rvalue (access
constant element)

const int& IntList::operator[](int
i) const {
assert((i >= 0) && (i < size()));
return Values[i];

}

// Compute an lvalue
int& IntList::operator[](int i) {
assert((i >= 0) && (i < size()));
return Values[i];

}

Stream Operators
! Should they be members?

class IntList {
// ...
ostream& operator<<(ostream &sout);
// ...

};

! Answer is based on the form we want the operation to
take

IntList A(5,1);
A << cout; // member form (unnatural)
cout << A; // nonmember form (natural)

Beware of Friends
! If a class needs to

!Can provide complete access rights to a nonmember
function, operator, or even another class
!Called a friend

! Declaration example

class IntList {
// ...
friend ostream& operator<< (

ostream &sout, const IntList &A);
// ...

};

Implementing Friend <<
ostream& operator<<(ostream &sout,
const IntList &A){
sout << "[";
for (int i = 0; i <
A.NumberValues; ++i) {

sout << A.Values[i] << " ";
}
sout << "]";
return sout;

}

Is there any need for
this friendship?

Proper << Implementation
ostream& operator<<(ostream
&sout,
const IntList &A){
sout << "[";
for (int i = 0; i < A.size();

++i) {
sout << A[i] << " ";

}
sout << "]";
return sout;

}

	Chapter 11:Pointers and Dynamic Objects
	Categorizing Expressions
	Basics
	Syntax
	Indirection Operator
	Address Operator
	Null Address
	Member Indirection
	Traditional Pointer Usage
	Constants and Pointers
	Differences
	General New Operation Behavior
	The Basic New Form
	Examples
	Another Basic New Form
	Examples
	The Primary New Form
	Examples
	Right Array For The Job
	Delete Operators
	Cleaning Up
	Dangling Pointer Pitfall
	Memory Leak Pitfall
	A Simple Dynamic List Type
	Sample IntList Usage
	IntList Definition
	IntList Definition (continued)
	IntList Definition (continued)
	Default Constructor
	Gang of Three Rule
	Why A Tailored Copy Constructor
	Tailored Copy Constructor
	Gang Of Three
	First Assignment Attempt
	Initial Implementation (Wrong)
	This Pointer
	Member Assignment Operator
	Accessing List Elements
	Stream Operators
	Beware of Friends
	Implementing Friend <<
	Proper << Implementation

