
Modifying Objects

Operators and Expressions

Memory Depiction

1001
12.5float y = 12.5; 1002y 1003

1004

Memory Depiction

float y = 12.5;
int Temperature = 32;

1001
12.5 1002y 1003

1004
100532Temperature 1006

Memory Depiction

float y = 12.5;
int Temperature = 32;
char Letter = 'c';

1001
12.5 1002y 1003

1004
100532

'c'
Temperature 1006

1007Letter

Memory Depiction

float y = 12.5;
int Temperature = 32;
char Letter = 'c';
int Number;

1001
12.5 1002y 1003

1004
100532

'c'
-

Temperature 1006
Letter 1007

1008Number 1009

Assignment Statement
Target becomes source

Basic form
object = expression ;

Celsius = (Fahrenheit - 32) * 5 / 9;
y = m * x + b;

Action
Expression is evaluated
Expression value stored in object

Definition

int NewStudents = 6;

6NewStudents

Definition

int NewStudents = 6;
int OldStudents = 21;

6NewStudents

21OldStudents

Definition

int NewStudents = 6;
int OldStudents = 21;
int TotalStudents;

6NewStudents

21OldStudents

-TotalStudents

Assignment Statement

int NewStudents = 6;
int OldStudents = 21;
int TotalStudents;

TotalStudents = NewStudents +
OldStudents;

6NewStudents

21OldStudents

?TotalStudents

Assignment Statement

int NewStudents = 6;
int OldStudents = 21;
int TotalStudents;

TotalStudents = NewStudents +
OldStudents;

6NewStudents

21OldStudents

27TotalStudents

Assignment Statement

int NewStudents = 6;
int OldStudents = 21;
int TotalStudents;

TotalStudents = NewStudents +
OldStudents;

OldStudents = TotalStudents;

6NewStudents

?OldStudents

27TotalStudents

Assignment Statement

int NewStudents = 6;
int OldStudents = 21;
int TotalStudents;

TotalStudents = NewStudents +
OldStudents;

OldStudents = TotalStudents;

6NewStudents

27OldStudents

27TotalStudents

Consider

int Value1 = 10; 10Value1

Consider

int Value1 = 10;
int Value2 = 20;

10Value1

20Value2

Consider

int Value1 = 10;
int Value2 = 20;
int Hold = Value1;

10Value1

20Value2

10Hold

Consider

int Value1 = 10;
int Value2 = 20;
int Hold = Value1;

Value1 = Value2;

?Value1

20Value2

10Hold

Consider

int Value1 = 10;
int Value2 = 20;
int Hold = Value1;

Value1 = Value2;

20Value1

20Value2

10Hold

Consider

int Value1 = 10;
int Value2 = 20;
int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

20Value1

?Value2

10Hold

Consider

int Value1 = 10;
int Value2 = 20;
int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

We swapped the values of objects Value1 and Value2
using Hold as temporary holder for Value1’s starting
value!

20Value1

10Value2

10Hold

Incrementing

1iint i = 1;

Incrementing
int i = 1;

i = i + 1;

1i

2i

Assign the value of expression i + 1 to i

Evaluates to 2

Const Definitions
Modifier const indicates that an object cannot
be changed

Object is read-only

Useful when defining objects representing
physical and mathematical constants

const float Pi = 3.1415;

Value has a name that can be used throughout
the program

const int SampleSize = 100;

Makes changing the constant easy
Only need to change the definition and recompile

Assignment Conversions
Floating-point expression assigned to an integer
object is truncated

Integer expression assigned to a floating-point object
is converted to a floating-point value

Consider
float y = 2.7;
int i = 15;
int j = 10;
i = y; // i is now 2
cout << i << endl;
y = j; // y is now 10.0
cout << y << endl;

Nonfundamental Types
Nonfundamental as they are additions to the language
C++ permits definition of new types and classes

A class is a special kind of type
Class objects typically have

Data members that represent attributes and values
Member functions for object inspection and manipulation
Members are accessed using the selection operator (.)

j = s.size();
Auxiliary functions for other behaviors

Libraries often provide special-purpose types and
classes
Programmers can also define their own types and
classes

Examples
Standard Template Library (STL) provides
class string

EzWindows library provides several graphical
types and classes

SimpleWindow is a class for creating and
manipulating window objects
RectangleShape is a class for creating and
manipulating rectangle objects

Class string
Class string

Used to represent a sequence of characters as
a single object

Some definitions
string Name = "Joanne";
string DecimalPoint = ".";
string empty = "";
string copy = name;
string Question = '?'; // illegal

Nonfundamental Types
To access a library use a preprocessor directive to
add its definitions to your program file

#include <string>

The using statement makes syntax less clumsy
Without it
std::string s = "Sharp";
std::string t = "Spiffy";

With it
using namespace std; // std contains string
string s = "Sharp";
string t = "Spiffy";

EzWindows Library Objects
Definitions are the same form as other objects

Example
SimpleWindow W;

Most non-fundamental classes have been created so that an
object is automatically initialized to a sensible value

SimpleWindow objects have member functions to
process messages to manipulate the objects

Most important member function is Open() which causes the
object to be displayed on the screen

• Example
W.Open();

Initialization
Class objects may have several attributes to initialize

Syntax for initializing an object with multiple
attributes

Type Identifier(Exp1, Exp2, ..., Expn);

SimpleWindow object has several optional attributes

SimpleWindow W("Window Fun", 8, 4);

First attribute
• Window banner

Second attribute
• Width of window in centimeters

Third attribute
• Height of window in centimeters

An EzWindows Program
#include <iostream>
using namespace std;
#include "ezwin.h"
int ApiMain() {

SimpleWindow W("A Window", 12, 12);
W.Open();

cout << "Enter a character to exit" << endl;
char a;
cin >> a;

return 0;
}

An EzWindows Project File

An EzWindows Project File

Sample Display Behavior

RectangleShape Objects
EzWindows also provides RectangleShape for
manipulating rectangles

RectangleShape objects can specify the following
attributes

SimpleWindow object that contains the rectangle (mandatory)

Offset from left edge of the SimpleWindow

Offset from top edge of the SimpleWindow
• Offsets are measured in centimeters from rectangle center

Width in centimeters

Height in centimeters

Color
• color is an EzWindows type

RectangleShape Objects
Examples

SimpleWindow W1("My Window", 20, 20);
SimpleWindow W2("My Other Window", 15,
10);

RectangleShape R(W1, 4, 2, Blue, 3, 2);
RectangleShape S(W2, 5, 2, Red, 1, 1);
RectangleShape T(W1, 3, 1, Black, 4,5);
RectangleShape U(W1, 4, 9);

RectangleShape Objects
Some RectangleShape member functions
for processing messages

Draw()
• Causes rectangle to be displayed in its associated

window

GetWidth()
• Returns width of object in centimeters

GetHeight()
• Returns height of object in centimeters

SetSize()
• Takes two attributes -- a width and height -- that are

used to reset dimensions of the rectangle

Another EzWindows Program

#include <iostream>
using namespace std;
#include "rect.h"
int ApiMain() {

SimpleWindow W("Rectangular Fun", 12, 12);
W.Open();
RectangleShape R(W, 5.0, 2.5, Blue, 1, 2);
R.Draw();
cout << "Enter a character to exit" << endl;
char Response;
cin >> Response;
return 0;

}

Sample Display Behavior

Compound Assignment
C++ has a large set of operators for applying an
operation to an object and then storing the result
back into the object

Examples
int i = 3;
i += 4; // i is now 7
cout << i << endl;

float a = 3.2;
a *= 2.0; // a is now
6.4
cout << a << endl;

Increment and Decrement
C++ has special operators for incrementing or
decrementing an object by one

Examples
int k = 4;
++k; // k is 5
k++; // k is 6
cout << k << endl;
int i = k++; // i is
6, k is 7
cout << i << " " << k << endl;
int j = ++k; // j is
8, k is 8
cout << j << " " << k << endl;

Class string
Some string member functions

size() determines number of characters in the string
string Saying = "Rambling with Gambling";
cout << Saying.size() << endl; // 22

substr() determines a substring (Note first position
has index 0)
string Word = Saying.substr(9, 4); // with

find() computes the position of a subsequence
int j = Saying.find("it"); // 10
int k = Saying.find("its"); // ?

Class string
Auxiliary functions and operators

getline() extracts the next input line
string Response;
cout << "Enter text: ";
getline(cin, Response, '\n');
cout << "Response is \"" << Response
<< "\"” << endl;

Example run
Enter text: Want what you do
Response is "Want what you do"

Class string
Auxiliary operators

+ string concatenation
string Part1 = "Me";
string Part2 = " and ";
string Part3 = "You";
string All = Part1 + Part2 + Part3;

+= compound concatenation assignment
string ThePlace = "Brooklyn";
ThePlace += ", NY";

#include <iostream>
using namespace std;
int main() {

cout << "Enter the date in American format: "
<< "(e.g., January 1, 2001) : ";

string Date;
getline(cin, Date, '\n');
int i = Date.find(" ");
string Month = Date.substr(0, i);
int k = Date.find(",");
string Day = Date.substr(i + 1, k - i - 1);
string Year = Date.substr(k + 2, Date.size() - 1);
string NewDate = Day + " " + Month + " " + Year;
cout << "Original date: " << Date << endl;
cout << "Converted date: " << NewDate << endl;
return 0;

}

	Modifying Objects
	Memory Depiction
	Memory Depiction
	Memory Depiction
	Memory Depiction
	Assignment Statement
	Definition
	Definition
	Definition
	Assignment Statement
	Assignment Statement
	Assignment Statement
	Assignment Statement
	Consider
	Consider
	Consider
	Consider
	Consider
	Consider
	Consider
	Incrementing
	Incrementing
	Const Definitions
	Assignment Conversions
	Nonfundamental Types
	Examples
	Class string
	Nonfundamental Types
	EzWindows Library Objects
	Initialization
	An EzWindows Program
	An EzWindows Project File
	An EzWindows Project File
	Sample Display Behavior
	RectangleShape Objects
	RectangleShape Objects
	RectangleShape Objects
	Another EzWindows Program
	Sample Display Behavior
	Compound Assignment
	Increment and Decrement
	Class string
	Class string
	Class string

